STATS 380 Statistical Computing SEMESTER ONE 2024Python

Java Python STATS 380

SEMESTER ONE 2024

STATISTICS

Statistical Computing

group,X17,X18,X19,X20,X21,X22

15-17,3.8,4 . 1,3 . 5,1 .4  e,1 . 1  e,1 . 0  e

18-24,20 . 2,19 . 9,16 . 2,11 .8,11 . 0,8 . 0

15-24,15 .3,14 . 9,12 .7,8 . 6,8 . 2,5 .8

25-34,22 .7,19,20 . 2,14 . 6,11 .4,10 . 1

35-44,17.3,19 . 9,14 . 1,12 .8,10 . 1,9 .8

45-54,16,16 . 2,17,13 . 0,11 .8,9 . 9

55-64,15,12 . 6,12 .8,12 . 5,12 .8,10 .7

65-74,7 . 6,7 . 9,7.3,6 . 2,6 .8,6 . 2

75+,2 . 2,4 . 1,3 . 9,2 . 6,3 .4,2 .4

Figure 1: A CSV file called "smoking-by-age . csv".

Figure 1 shows the contents of a CSV file called  "smoking-by-age . csv".

The following code reads the CSV file into R and prints out the resulting data frame, smokingByAge.  This data frame. will be used in several of the questions in this exam.

>  smokingByAge  <-  read. csv("smoking-by-age. csv")

>  smokingByAge

group    X17   X18   X19     X20     X21     X22

1  15-17    3.8   4 . 1    3 . 5  1 .4  e   1 . 1  e   1 . 0  e

2  18-24  20 . 2   19 . 9  16 . 2     11 .8    11 . 0     8 . 0

3  15-24  15 .3  14 . 9  12 .7      8 . 6       8 . 2     5 .8

4  25-34  22 .7  19 . 0  20 . 2     14 . 6    11 .4    10 . 1

5  35-44  17.3  19 . 9  14 . 1     12 .8    10 . 1      9 .8

6  45-54   16 . 0  16 . 2  17 . 0    13 . 0     11 .8     9 . 9

7  55-64  15 . 0  12 . 6   12 .8    12 . 5     12 .8     10 .7

8  65-74    7 . 6    7 . 9    7.3       6 . 2     6 .8     6 . 2

9     75+    2 . 2   4 . 1    3 . 9       2 . 6       3 .4     2 .4

1.                                                                                                                     [10 marks]

Write down what the output of the following code would be.

(a)                                                                                                               [6 marks]

>  sapply(smokingByAge,  mode)

      (b)                                                                                                               [2 marks]

>  dim(smokingByAge)

      (c)                                                                                                               [2 marks]

                    >  colnames(smokingByAge)

The data frames shown below will be used in some of the remaining questions in this exam.

> maoriSmoking

group  2017  2018  2019  2020  2021  2022

16  Total  Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

17      Maori  men  29 .7  31 .4  27.3  25 . 6  23 . 0  20 .4

18  Maori  women  36 .8  35 .4  35 . 0  25 .8  21 .7  20 . 2

> pacificSmoking

group  2017  2018  2019  2020  2021  2022

20  Total  Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

21      Pacific  men  28 . 5  28 . 1  26 .8  20 .3  16 . 9  10 . 6

22  Pacific  women  18 . 1  21 .8   19 . 0  19 . 5  20 .4   10 . 1

>  asianSmoking

group  2017  2018  2019  2020  2021  2022

24  Total  Asian    7 . 9    8 . 5    8 . 9    5 .8    3.3    3.7

25      Asian men   12 .8  14 . 1  14 . 0    9 . 0   4.7    6 . 1

26  Asian  women     2 . 9    2 .3    2 . 5     1 . 5     1 .8    0 . 6

>  euroOtherSmoking

group  2017  2018  2019  2020  2021  2022

28  Total  European/Other  13 . 6  12 .7  11 .8    9 .4    9 . 2    7.7

29      European/Other  men   14 . 9  14 . 2  11 . 9  10 .3  10 . 5    8 . 5

30  European/Other  women  12 .3  11 . 2  11 .7    8 . 6     7 . 9    6 . 9

>  test1

group

1 not  this  row

2       Total  Row

>  test2

group

1 not  this  row

2    or  this  row

3       Total  Row

>  test3

group

1  Total  Row  One

2  Total  Row  Two

2.                                                                                                                    [10 marks]

(a)                                                                                                               [3 marks]

Write a function called findTotal().  The function should have a single argument, which is a data frame.  It should use grepl() to search the group column of the data frame. for values that contain the text  "Total".   The function should return a logical vector.

The findTotal() function should behave like this:

>  findTotal(maoriSmoking)

[1]   TRUE  FALSE  FALSE

>  findTotal(pacificSmoking)

[1]   TRUE  FALSE  FALSE

>  findTotal(test1)

[1]  FALSE   TRUE

>  findTotal(test2)

[1]  FALSE  FALSE   TRUE

>  findTotal(test3)

[1]  TRUE  TRUE

The values of the symbols maoriSmoking, pacificSmoking, test1, test2, and test3 can be found on page 3.

(b)                                                                                                               [7 marks]

Write  a  function called getTotal().   The function  should have a single argument, which is a data frame.  It should use findTotal() to search the group column of the data frame. for values that contains the word "Total" and then subset() to extract those rows from the data frame. and thengsub() to remove the word "Total" from the group column of those rows.  The function should return a data frame.

The getTotal() function should behave like this:

> getTotal(maoriSmoking)

group  2017  2018  2019  2020  2021  2022

16  Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

> getTotal(pacificSmoking)

group  2017  2018  2019  2020  2021  2022

20  Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

> getTotal(test1)

group

2     Row

> getTotal(test2)

group

3     Row

> getTotal(test3)

group

1  Row  One

2  Row  Two

The values of the symbols maoriSmoking, pacificSmoking, test1, test2, and test3 can be found on page 3.

The following code creates a list called tables and prints out the list.  This list will be used in some of the remaining questions in this exam.

>  tables  <-  list(maoriSmoking,

+                           pacificSmoking,

+                              asianSmoking,

+                              STATS 380 Statistical Computing SEMESTER ONE 2024Python   euroOtherSmoking)

>  tables

[[1]]

group  2017  2018  2019  2020  2021  2022

16  Total  Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

17      Maori  men  29 .7  31 .4  27.3  25 . 6  23 . 0  20 .4

18  Maori  women  36 .8  35 .4  35 . 0  25 .8  21 .7  20 . 2

[[2]]

group  2017  2018  2019  2020  2021  2022

20  Total  Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

21      Pacific  men  28 . 5  28 . 1  26 .8  20 .3  16 . 9  10 . 6

22  Pacific  women  18 . 1  21 .8   19 . 0  19 . 5  20 .4   10 . 1

[[3]]

group  2017  2018  2019  2020  2021  2022

24  Total  Asian    7 . 9    8 . 5    8 . 9    5 .8    3.3    3.7

25      Asian men   12 .8  14 . 1  14 . 0    9 . 0   4.7    6 . 1

26  Asian  women     2 . 9    2 .3    2 . 5     1 . 5     1 .8    0 . 6

[[4]]

group  2017  2018  2019  2020  2021  2022

28  Total  European/Other  13 . 6  12 .7  11 .8    9 .4    9 . 2    7.7

29      European/Other  men   14 . 9  14 . 2  11 . 9  10 .3  10 . 5    8 . 5

30  European/Other  women  12 .3  11 . 2  11 .7    8 . 6     7 . 9    6 . 9

3.                                                                                                                    [10 marks]

(a)                                                                                                               [2 marks]

Write  R  code that uses the list tables  (from page 6) and the functions lapply() and getTotal() (from page 5) to create a list of data frames that just contain "Total" rows and assign the result to the symbol totalTables.

The list totalTables should look like this:

>  totalTables

[[1]]

group  2017  2018  2019  2020  2021  2022

16  Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

[[2]]

group  2017  2018  2019  2020  2021  2022

20  Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

[[3]]

group  2017  2018  2019  2020  2021  2022

24  Asian    7 . 9    8 . 5    8 . 9    5 .8    3.3    3.7

[[4]]

group  2017  2018  2019  2020  2021  2022

28  European/Other  13 . 6  12 .7  11 .8    9 .4    9 . 2    7.7

(b)                                                                                                               [3 marks] 

Write  R  code  that  uses the  functions  do. call()  and  rbind() to  com- bine the list of data frames,  totalTables, into a single data frame. called ethnicSmoking.

The data frame. ethnicSmoking should look like this:

>  ethnicSmoking

group  2017  2018  2019  2020  2021  2022

16                    Maori  33.4  33 .4  31 . 2  25 .7  22 .3  20 . 2

20               Pacific  23 . 1  24.7  22 . 5  19 . 9  18.8  10 .3

24                    Asian    7 . 9    8 . 5    8 . 9    5 .8    3.3    3.7

28  European/Other  13 . 6  12 .7  11 .8    9 .4    9 . 2    7.7

(c)                                                                                                               [5 marks] 

Write down what the output of the following code would be.

> groups  <-  split(ethnicSmoking[1:2,  ],  ethnicSmoking$group[1:2]) 

> groups

>  ranges  <-  lapply(groups,  function(df)  range(df[-1])) 

>  ranges

>  do. call(rbind,  ranges)

The following code creates a plot (Figure 2) that shows the prevalence of smoking overtime for different ethnic groups.

The code makes use of the data in the ethnicSmoking data frame. (from page 7). The code and plot will be used in some of the remaining questions in this exam.

> par(mar=margins) > plot. new()

> plot. window(xlim, ylim) >  axis(1,  at=years)

>  axis(right) >  box()

>  for  (i  in  1:numGroups)  {

+         y  <-  ethnicSmoking[i,  -1]

+        lines(years, y)

+        points(years,  y, pch=pch) +  }

> mtext(ethnicSmoking$group,  side=left,  at=ethnicSmoking$"2017", 

+           adj=adj,  line=.5,  las=horizontal)

 

Figure 2:  A plot of smoking prevalence for different ethnic groups.   The grey border around the outside is not drawn by R; it is just there to show the extent of the “page” that R is drawing on.

4.                                                                                                                   [10 marks]

The code shown on page 8 makes use of some symbols that have not yet been assigned a value.

Write R code that assigns values to each of the following symbols:

(i) margins

(ii) xlim

(iii) ylim

(iv) years

(v) right

(vi) numGroups

(vii) pch

(viii)  left

(ix)  adj

(x) horizontal

HINTS:

• The left margin of the plot has been made wider to leave room for the ethnic group labels.

• The y-axis range is calculated from the data for all ethnic groups.

•  The data symbols are filled circles.

• The ethnic group labels are right-aligned.

• The help page for themtext() function shown in Appendix B may be helpful.

The following code defines a function called middle() that will be used in some of the remaining questions in this exam.  Line numbers are provided in grey so that you can refer to specificlines in your answers if necessary.

The purpose of this function is to calculate a “middle” value for each age range in the group column of the smokingByAge data frame. (from page 2).  For each row of the group column, if the value contains a dash, the function splits the value into pieces either side of the dash, converts those pieces into numbers, and averages the numbers.  If the value does not contain a dash, the function searches for and removes any plus signs, converts what remains into a number and then calulates the average of that number and 100.

1   middle  <-  function()  {

2          n  <-  nrow(smokingByAge)

3          column  <-  smokingByAge[["group"]]

4          middle  <-  rep(NA, n)

5          for  (i  in  1:n)  {

6                  range  <-  column[i]

7                  if  (grepl("-",  range))  {

8                          bounds  <-  strsplit(range,  "-")[[1]]

9                          boundsNum  <-  as. numeric(bounds)

10                         middle[i]  <-  mean(boundsNum)

11                 }  else  {

12                        lower  <-  gsub("+",  "",  range,  fixed=TRUE)

13                         lowerNum  <-  as. numeric(lower)

14                        middle[i]  <-  mean(c(lowerNum,  100))

15                  }

16           }

17          middle

18   }

The following code and output shows that the middle() function returns a numeric vector of “middle” values.

> middle()

[1]  16 . 0  21 . 0   19 . 5  29 . 5  39 . 5  49 . 5  59 . 5  69 . 5  87 . 5

5.                                                                                                                    [10 marks] 

Identify all constant values in the middle() function code (from page 10) and, for each constant, describe what the constant represents.

Describe any overall assumptions that the function is making.

6.                                                                                                                    [10 marks] 

Identify all local and global symbols (excluding functions) in the middle() function code (from page 10) and, for each symbol, describe the mode of the R object that is assigned to the symbol.

The data frame. shown below, vapingByAge, will be used in some of the remaining questions in this exam.

vapingByAge

group      X17     X18     X19     X20     X21     X22

1  15-17  0 . 6  e  1 .7  e  2 .3  e  5 .8  e  8.3  e  15 .4   

2  18-24    4 . 1     4.4       5 . 0    15 .3    23 . 0     25 . 2   

3  15-24    3 . 0     3 . 6     4.3    12 .4    18.8    22 . 1   

4  25-34   4 . 1       5 . 2      5 . 9       9 .8    10 . 9    14.8   

5  35-44    3 . 2     5 . 0     4 . 6       5 .8    10 .3    10 .7   

6  45-54    2 .4     3 . 2     3.3     6 . 5     5 .7     6 .3   

7  55-64    2 . 5       2 . 2       2 . 1       2 . 6       5 . 2       4 . 2   

8  65-74     1 . 1       1 . 0      1 . 5      1 . 0      1 .7       2 . 5   

9     75+           S  0 . 2  e           S  0 .4  e  0 .8  e  0         

资源下载链接为: https://pan.quark.cn/s/00cceecb854d 这个项目名为“mnist-nnet-hls-zynq7020-fpga prj”,是一个与机器学习相关的工程,专注于利用高级综合(HLS)技术将针对MNIST数据集设计的神经网络(nnet)实现在Zynq 7020 FPGA平台上,以加速图像识别任务。项目提供的压缩包包含所有相关代码文件,如C/C++源码、HLS接口定义、Vivado HLS项目文件、硬件描述语言代码(Verilog或VHDL)及配置文件等,用户可通过这些代码理解、实现或修改设计流程。 项目标签“mnist-nnet-hls-z”进一步明确了其关注点:MNIST数据集、HLS技术以及Zynq目标平台。MNIST是用于手写数字识别的知名训练数据集;HLS可将高级编程语言转化为硬件描述语言;Zynq 7020是Xilinx的SoC FPGA,融合了ARM处理器与可编程逻辑。文件名中提到的“vivado”指的是Xilinx的Vivado设计套件,它是一个用于FPGA设计、实现、仿真和调试的集成开发环境,其中的Vivado HLS工具能够将C、C++或SystemC编写的算法自动转换为硬件描述语言代码。 项目可能的实施步骤如下:首先,对MNIST数据集进行预处理,如归一化、降维等,使其适配神经网络模型输入;其次,构建适用于手写数字识别的神经网络模型,例如卷积神经网络(CNN)或全连接网络(FCN);接着,运用HLS工具将神经网络模型转化为硬件描述,并优化性能与资源利用率;然后,在Vivado环境中,将生成的硬件描述代码映射到Zynq 7020的FPGA部分,进行时序分析与综合优化;此外,由于Zynq是SoC,包含处理器系统,还需编写控制软件来管理与调度FPGA上的硬件加速器,可能涉及OpenCV、OpenCL等库的使用;之后,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值