21-127: Concepts of Mathematics Homework 7Matlab

Java Python 21-127: Concepts of Mathematics

Homework 7

• Your answers to the assigned problems below should be formatted as a PDF file and uploaded to Gradescope by Thursday, November 7 at 11:59 pm.  You can access Gradescope from the Canvas page.

• Your answers to the unassigned problems are not collected.  You can find solutions to these by clicking on the assignment on Canvas.

•  The points for each assigned problem are listed on the right-hand side and (should) sum to 25. An extra bonus point is awarded for submissions that are typeset with LATEX.

Unassigned Problems

1.    (a)  Use the Euclidean Algorithm to determine gcd(1819 , 3587).

(b)  Find (x, y) ∈ Z2  such that 1819x + 3587y = gcd(1819, 3587).

2.  Prove that for all n ∈ N, 5n + 3 and 3n + 2 are coprime.

3.  Let a, b ∈ Z, not both 0, and m ∈ Z+ .  Prove that gcd(ma, mb) = m · gcd(a, b).

4.  Find all integral solutions to the following linear diophantine equations, or state why none exist.

(a)  123x + 45y = 17 (b)  123x + 45y = 18

5.  Prove  that  if  a and  b are  relatively  prime  integers  then  gcd(a + b, a — b)  =  1 or 2  wi 21-127: Concepts of Mathematics Homework 7Matlab th gcd(a + b, a — b) = 2 if a and b have the same parity.

Assigned Problems

1.  Let a, b ∈ Z+ .  Using only divisibility properties  (material discussed in lecture prior to the discussion of prime factorizations), prove that gcd(a, b) · lcm[a, b] = ab.                                         [5 pts]

2.  Let a, b ∈ Z, not both 0, d = gcd(a, b), and c ∈ Z such that d j c.  Fix  (x0 , y0 ) ∈ Z2  such that ax0 + by0 = c.

(a)  Show that for all k ∈ Z, the pair (x0 + d/bk, y0  — d/ak) is a solution to the linear Diophantine equation ax + by = c.                               [1 pt]

(b)  Let s, t ∈ Z such that (x0 + s, y0 + t) is a solution to ax + by = c.  Show that there exists k ∈ Z such that s = d/bk  and t = — d/ak.                                   [4 pts]

3.  Prove that for all a, b ∈ Z+ , if a3  j b2  then a j b.                                     [5 pts]

4.  Prove that for all a, b ∈ Z+ , gcd(a + b,lcm[a, b]) = gcd(a, b).                                                             [5 pts]

5.  Prove that for all p ∈ N, ifp is prime and p > 3 then p2 ≡ 1  (mod 24).

Hint:  Consider using Euclid’s Lemma         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值