synchronized底层语义原理
Java虚拟机中的同步(Synchronization)基于进入和退出管程(Monitor)对象实现,无论是显示同步(有明确的monitorenter和monitorexit指令,即同步代码块)还是隐式同步都是如此。在Java语言中,同步用得最多的地方可能是被synchronized修饰的同步方法。同步方法并不是由monitorenter和monitorexit指令来实现同步的,而是由方法调用指令读取运行时常量池中方法的ACC_SYNCHRONIZED标志来隐式实现的。
理解Java对象头与Monitor
在JVM中,对象在内存中的布局分为三块区域:对象头、实例数据和对齐填充。如下:
实例变量:存放类的属性数据信息,包括父类的属性信息,如果是数组的实力部分还包括数组的长度,这部分内存按4字节对齐。
填充数据:由于虚拟机要求对象的起始地址必须是8字节的整数倍。填充数据不是必须存在的,仅仅是为了字节对齐。
对象头:它是实现synchronized的锁对象的基础。一般而言,synchronized使用的锁对象是存储在java对象头里的,jvm中采用2个字来存储对象头(如果对象是数组则会分配3个字,多出来1个字记录的数组长度),其主要结构是由Mark Word和Class Metadata Address组成,其结构说明如下表。
虚拟机位数 | 头对象结构 | 说明 |
---|---|---|
32/64bit | MarkWord | 存储对象的hashCode、锁信息或分代年龄或GC标志等信息 |
32/64bit | Class Metadata Address | 类型指针指向对象的类元数据,JVM通过这个指针确定该对对象是哪个类的实例 |
其中Mark Word在默认情况下存储着对象的HashCode、分代年龄、锁标记位等以下是32位JVM的Mark Word默认存储结构
锁状态 | 25bit | 4bit | 1bit是否是偏向锁 | 2bit锁标志位 |
---|---|---|---|---|
无锁状态 | 对象HashCode | 对象分代年龄 | 0 | 01 |
由于对象头的信息是与对象自身定义的数据没有关系的额外存储成本,因为考虑到JVM的空间效率,Mark Word被设计成一个非固定的数据结构,以便存储更多有效的数据,它会根据对象本身的状态复用自己的存储空间,如32位JVM下,除了上述列出的Mark Word默认存储结构外,还有如下可能变化的结构:
其中轻量级锁和偏向锁是Java6对synchronized锁进行优化后新增加的,稍后我们会简要分析。这里我们主要分析一下重量级锁也就是通常说的synchronized的对象锁,锁标识位为10,其中指针指向的是monitor对象(也称为管程或监视器锁)的起始地址。每个对象都存在这一个monitor与之关联,对象与其monitor之间的关系有存在多种实现方式,如monitor可以与对象一起创建销毁或当线程试图获取对象锁时自动生成,但当一个monitor被某个线程持有后,它便处于锁定状态。在Java虚拟机(HotSport)中,monitor是由ObjectMonitor实现的,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的)
ObjectMonitor() {
_header = NULL;
_count = 0; //记录个数
_waiters = 0,
_recursions = 0;
_object = NULL;
_owner = NULL;
_WaitSet = NULL; //处于wait状态的线程,会被加入到_WaitSet
_WaitSetLock = 0 ;
_Responsible = NULL ;
_succ = NULL ;
_cxq = NULL ;
FreeNext = NULL ;
_EntryList = NULL ; //处于等待锁block状态的线程,会被加入到该列表
_SpinFreq = 0 ;
_SpinClock = 0 ;
OwnerIsThread = 0 ;
}
ObjectMonitor中有两个队列,_WaitSet和_EntryList,用来保存ObjectWaiter对象列表(每个等待锁的线程都会被封装成ObjectWaiter对象),_owner指向持有ObjectMonitor对象的线程,当多个线程同时访问一段同步代码时,首先会进入_EntryList集合,当线程获取到对象的monitor后进入_Owner区域并把monitor中的owner变量设置为当前线程,同时monitor中的计算器count+1,弱线程调用wait()方法, 将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入WaitSet集合中等待被唤醒。若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)。如下图所示:
由此看来,monitor对象存在于每个Java对象的对象头中(存储的指针的指向),synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时也是notify/notifyAll/wait等方法存在于顶级对象Object中的原因。
synchronized代码块底层原理
现在我们重新定义一个synchronized修饰的同步代码块,在代码块中操作共享变量i,如下
public class SyncCodeBlock {
public int i;
public void syncTask(){
//同步代码库
synchronized (this){
i++;
}
}
}
编译上述代码并使用javap反编译后得到字节码如下(这里我们省略一部分没有必要的信息):
//===========主要看看syncTask方法实现================
public void syncTask();
descriptor: ()V
flags: ACC_PUBLIC
Code:
stack=3, locals=3, args_size=1
0: aload_0
1: dup
2: astore_1
3: monitorenter //注意此处,进入同步方法
4: aload_0
5: dup
6: getfield #2 // Field i:I
9: iconst_1
10: iadd
11: putfield #2 // Field i:I
14: aload_1
15: monitorexit //注意此处,退出同步方法
16: goto 24
19: astore_2
20: aload_1
21: monitorexit //注意此处,退出同步方法
22: aload_2
23: athrow
24: return
Exception table:
//省略其他字节码.......
}
SourceFile: "SyncCodeBlock.java"
我们主要关注字节码中的如下代码:
3: monitorenter //进入同步方法
//..........省略其他
15: monitorexit //退出同步方法
16: goto 24
//省略其他.......
21: monitorexit //退出同步方法
从字节码中可知同步语句块的实现使用的是monitorenter和monitorexit指令,其实monitorenter指令指向同步代码块的开始位置,monitorexit指令则指明同步代码块的结束位置,当执行monitorenter指令是,当前线程将试图获取objectref(即对象锁)锁对应的monitor的持有权,当objectref的monitor的进入计数器为0,那线程可以成功取得monitor,并将计数器值设置为1,取锁成功。如果当前线程已经拥有objectref的monitor的持有权,那它可以重入这个monitor,重入时计数器的值也会加1,。倘若其他线程已经拥有objectref的monitor的使用权,那么当前线程将被阻塞,知道正在执行的线程执行完毕,即monitorexit指令被执行,执行线程将释放monitor(锁)并设置计数器值为0,其他线程将有机会持有monitor。值得注意的是编译器将会确保无论方法通过何种方式完成,方法中调用过的每条monitorenter指令都有执行其对应的monitorexit指令,而无论这个方法是正常结束还是异常结束。为了保证在方法异常完成时monitorenter和monitoreixt指令亦然可以正确配对执行monitorexit指令,它就是异常结束时被执行的释放monitor的指令。
synchronized方法底层原理
方法及的同步是隐式,即无需通过字节码指令来控制的,它实现在方法调用和返回操作之中。JVM可以从方法常量池中的方法表结构(method_info Structure)中的ACC_SYNCHRONIZED方位标志区分一个方法是否同步方法。当方法调用时,调用指令将会检查方法的ACC_SYNCHRONIZED访问标志是否被设置,如果设置了,执行线程将先持有monitor(虚拟机规范中用的是管程一次),然后在执行方法,最后在方法完成(无论是正常完成还是非正常完成)时释放monitor。在方法执行期间,执行线程持有了monitor,其他任何线程都无法再获得同一个monitor。如果一个同步方法执行期间抛出了异常,并在方法内部无法处理此异常,那这个同步方法持有的monitor将在异常抛到同步方法之外时自动释放。下面我们看看字节码层面如何实现:
public class SyncMethod {
public int i;
public synchronized void syncTask(){
i++;
}
}
使用javap反编译后的字节码如下:
//省略没必要的字节码
//==================syncTask方法======================
public synchronized void syncTask();
descriptor: ()V
//方法标识ACC_PUBLIC代表public修饰,ACC_SYNCHRONIZED指明该方法为同步方法
flags: ACC_PUBLIC, ACC_SYNCHRONIZED
Code:
stack=3, locals=1, args_size=1
0: aload_0
1: dup
2: getfield #2 // Field i:I
5: iconst_1
6: iadd
7: putfield #2 // Field i:I
10: return
LineNumberTable:
line 12: 0
line 13: 10
}
从字节码中可以看出,synchronized修饰的方法并没有monitorenter指令和monitorexit指令,取而代之的确实是ACC_SYNCHRONIZED标识,改标识指明了该方法是一个同步方法,JVM通过该ACC_SYNCHRONIZED访问标示来辨别一个方法是否声明为同步方法,从而执行响应的同步调用。这便是synchronized锁在同步代码块和同步方法上实现的基本原理。同时我们还需要必须注意到的是在JAVA早期版本中,synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层操作系统的Mutx Lock来实现的,而操作系统实现线程之间的切换时需要从用户态转换到核心态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,这也是为什么早起的synchronized效率低的原因。庆幸的是在Java 6之后Java官方对从JVM层面对synchronized较大优化,所以现在的synchronized锁效率也优化得很不错了,Java6之后,为了减少获得锁和释放锁带来的性能小号,引入了轻量级锁和偏向锁。
Java虚拟机对synchronized的优化
锁的状态总共有四种,无锁状态、偏向锁、轻量级锁和重量级锁。随着锁的竞争,锁可以从偏向锁升级到轻量级锁,再升级到重量级锁,但是锁的升级是单向的,也就是说只能从低到高升级,不会出现锁的降级,关于重量级锁,前面我们已详细分析过。
偏向锁
偏向锁是Java6之后加入的新锁,它是一种针对加锁操作的优化手段,经过研究发现,在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,因此为了减少同一线程获取锁(会涉及到一些CAS操作,耗时)的代价而引入偏向锁。偏向锁的核心思想是,如果一个线程获得了锁,那么锁就进入偏向模式,此时Mark Word的结构也变为偏向锁结构,当这个线程再次请求锁时,无需再做任何同步操作,即获取锁的过程,这样就省去了大量有关锁申请的操作,从而也就提供程序的性能。所以,对于没有锁竞争的场合,偏向锁有很好的优化效果,毕竟极有可能连续多次是同一个线程申请相同的锁。但是对于锁竞争比较激烈的场合,偏向锁就失效了,因为这样场合极有可能每次申请锁的线程都是不同的,因此这种场合下不应该使用偏向锁,否则会得不偿失,需要注意的是,偏向锁失败后,并不会立即膨胀为重量级锁,而是先升级为轻量级锁。
轻量级锁
倘若偏向锁失败,虚拟机并不会立即升级为重量级锁,它还会尝试使用一种称为轻量级锁的优化手段(1.6之后加入的),此时Mark Word的结构也变为轻量级锁的结构。轻量级锁能够提升程序性能的一句是“对绝大部分的锁,在整个同步周期内都不会存在竞争”,注意这是经验数据。需要了解的是,轻量级锁所适应的场景是线程交替执行同步代码块的场合,如果存在同一时间访问同一锁的场合,就会导致轻量级锁膨胀为重量级锁。
自旋锁
轻量级锁失败后,虚拟机为了避免线程真实地在操作系统层面挂起,还会进行一项成为自旋锁的优化。这是基于在大多数情况下,线程持有锁的时间都不会太长,如果直接挂起操作系统层面的线程可能会得不偿失,毕竟操作系统实现线程之间的切换时需要从用户态转换为和心态,在这个状态之间转换需要相对较长的时间,时间成本相对较高,因此自旋锁会假设在不久将来,当前的线程可以获得锁,隐刺虚拟机会让当前想获取锁的线程做几个空循环(这也是成为自旋的原因),一般不会太久,可能是50个循环或100个循环,在经过若干次循环后,如果得到锁,就顺利进入临界区。如果还不能获得锁,那就会将线程在操作系统层面挂起,这就是自旋锁的优化方式,这种方式确实也是可以提高效率的。最后没办法也就只能升级为重要级锁了。
锁消除
锁消除是虚拟机另外一种锁的优化,这种优化更为彻底,Java虚拟机在JIT编译时(可以简单理解为当某段代码即将第一次被执行时进行编译,又称即时编译),通过对运行上下文的扫描,取出不可能存在共享资源竞争的锁,通过这种方式消除没有必要的锁,可以节省毫无意义的请求锁的时间,如下StringBuffer的append是一个同步方法,但是在add方法中的StringBuffer属于一个局部变量,并且不会被其他线程锁使用,因此StringBuffer不可能存在共享资源竞争的情景,JVM会自动将其锁消除。
public class StringBufferRemoveSync {
public void add(String str1, String str2) {
//StringBuffer是线程安全,由于sb只会在append方法中使用,不可能被其他线程引用
//因此sb属于不可能共享的资源,JVM会自动消除内部的锁
StringBuffer sb = new StringBuffer();
sb.append(str1).append(str2);
}
public static void main(String[] args) {
StringBufferRemoveSync rmsync = new StringBufferRemoveSync();
for (int i = 0; i < 10000000; i++) {
rmsync.add("abc", "123");
}
}
}
转载自http://blog.youkuaiyun.com/javazejian/article/details/72828483