A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<105) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
分析:判断输入的数字是否大于0,若大于0则判断是否为素数,若是,则将其转换成d进制,然后从十进制判断是否为素数。是就输出Yes,否则输出No。
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
bool isprime(int n) {
if (n <= 1) return false;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
int main() {
int num, code, sum;
for (int i = 0; true; i++) {
sum = 0;
cin >> num;
if (num > 0) {
cin >> code;
if (!isprime(num)) { cout << "No\n"; continue; }
while (num) {
sum = sum * code + num % code;
num /= code;
}
if (isprime(sum)) cout << "Yes\n";
else cout << "No\n";
}
else break;
}
return 0;
}
可逆素数的D进制判断
本文探讨了在给定的D进制数系统中判断一个正整数N是否为可逆素数的问题。可逆素数是指在任何数系统中,其“反转”在该数系统中也是素数的素数。文章提供了判断方法及C++实现代码,通过将数字转换为指定进制并检查其反转数是否为素数来确定。
253

被折叠的 条评论
为什么被折叠?



