POJ - 1251 Jungle Roads
思路
Prim最小生成树模板题
代码
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int N = 200, M = N * N;
int g[N][N];
int dist[N];
int n;
bool st[N];
LL prim() {
LL res = 0;
memset(dist, 0x3f, sizeof dist);
for (int i = 0; i < n; i ++) {
int t = -1;
for (int j = 0; j < n; j ++) {
if(!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
}
if(i)
res += dist[t];
st[t] = true;
for (int j = 0; j < n; j ++) {
dist[j] = min(dist[j], g[t][j]);
}
}
return res;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
while(cin >> n && n) {
memset(g, 0x3f, sizeof g);
memset(st, false, sizeof st);
for (int i = 0; i < n - 1; i ++) {
char A[2];
cin >> A;
int a = A[0] - 'A';
int m;
cin >> m;
while(m --) {
char B[2];
int c;
cin >> B >> c;
int b = B[0] - 'A';
g[a][b] = g[b][a] = min(g[a][b], c);
}
}
LL ans = prim();
cout << ans << endl;
}
return 0;
}
POJ - 1287 Networking
思路
Prim模板
代码
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int N = 55;
int g[N][N];
int dist[N];
bool st[N];
int n, m;
LL prim() {
LL res = 0;
memset(dist, 0x3f, sizeof dist);
for (int i = 0; i < n; i ++) {
int t = -1;
for (int j = 1; j <= n; j ++) {
if(!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
}
if(i)
res += dist[t];
st[t] = true;
for (int j = 1; j <= n; j ++) {
dist[j] = min(dist[j], g[t][j]);
}
}
return res;
}
int main() {
while(cin >> n >> m && n) {
memset(g, 0x3f, sizeof g);
memset(st, false, sizeof st);
while(m --) {
int a, b, c;
cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c);
}
LL ans = prim();
cout << ans << endl;
}
return 0;
}
POJ - 2421 Constructing Roads
题意
第一部分输入边的信息
第二部分输入 一开始哪些边已经建好了
思路
直接套Kruscal好写点
心得
函数的重构学到了
(再也不怕不支持c++11了,c++11直接写大括号赋值)
代码
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N = 110, M = N * N;
const int inf = 0x3f3f3f;
typedef long long LL;
struct Edge {
int a, b, w;
Edge(int aa, int bb, int ww) {
a = aa, b = bb, w = ww;
}
Edge() {
a = 0, b = 0, w = inf;
}
bool operator < (const Edge &W)const {
return w < W.w;
}
}edges[M];
int p[N];
int cnt;
int find(int x) {
if(p[x] != x)
p[x] = find(p[x]);
return p[x];
}
void init()
{
for (int i = 1; i < N; i ++)
p[i] = i;
cnt = 0;
}
LL Kruscal() {
LL res = 0;
sort(edges, edges + cnt);
for (int i = 0; i < cnt; i ++) {
int a = edges[i].a, b = edges[i].b, w = edges[i].w;
int fa = find(a), fb = find(b);
if(fa != fb) {
res += w;
p[fa] = fb;
}
}
return res;
}
int main() {
int n;
cin >> n;
init();
for (int i = 1; i <= n; i ++)
for (int j = 1; j <= n; j ++) {
int w;
cin >> w;
edges[cnt++] = Edge{i, j, w};
}
int m;
cin >> m;
while(m --) {
int a, b;
cin >> a >> b;
int fa = find(a), fb = find(b);
if(fa != fb)
p[fa] = fb;
}
LL ans = Kruscal();
cout << ans << endl;
return 0;
}
POJ - 2349 Arctic Network
题意
给出k个卫星, 求最小的D使得村庄的连接都能连通
k个卫星的作用:可以删除最小生成树中k-1条边
D就是删边之后最小生成树中最大的边
思路
也挺简单,就是求Kruscal记录边的权值,输出w[m-k-1]
即可
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define x first
#define y second
using namespace std;
typedef pair<int, int> PII;
const int N = 510, M = N * N;
int k, m;
PII point[M];
int cnt1;
int cnt2;
double weight[M];
int p[N];
struct Edge {
int a, b;
double w;
Edge(int aa, int bb, double ww) {
a = aa, b = bb, w = ww;
}
Edge() {
a = 0, b = 0, w = 0;
}
bool operator < (const Edge& W)const {
return w < W.w;
}
} edges[M];
void init() {
cnt1 = cnt2 = 0;
for (int i = 0; i < N; i ++)
p[i] = i;
}
int find(int x) {
if(p[x] != x)
return p[x] = find(p[x]);
return p[x];
}
double get_dis(int x1, int y1, int x2, int y2) {
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}
double Kruscal() {
sort(edges, edges + cnt1);
for (int i = 0; i < cnt1; i ++) {
int a = edges[i].a, b = edges[i].b;
double dis = edges[i].w;
int fa = find(a), fb = find(b);
if(fa != fb) {
weight[cnt2++] = dis;
p[fa] = fb;
}
}
return weight[m - k - 1];
}
int main() {
int T;
scanf("%d", &T);
while(T --) {
init();
scanf("%d%d", &k, &m);
for (int i = 0; i < m; i ++)
{
int x, y;
scanf("%d%d", &point[i].x, &point[i].y);
}
for (int i = 0; i < m; i ++)
for (int j = i + 1; j < m; j ++) {
double dis = get_dis(point[i].x, point[i].y, point[j].x, point[j].y);
edges[cnt1++] = Edge{i, j, dis};
}
double ans = Kruscal();
printf("%.2f\n", ans);
}
return 0;
}