感知哈希

下面是简单的步骤,来说明对图像进行PHA的运算过程:
第一步,缩小尺寸。
最快速的去除高频和细节,只保留结构明暗的方法就是缩小尺寸。
将图片缩小到8x8的尺寸,总共64个像素。摒弃不同尺寸、比例带来的图片差异。
第二步,简化色彩。
将缩小后的图片,转为64级灰度。也就是说,所有像素点总共只有64种颜色。
第三步,计算DCT(离散余弦变换)。
DCT是把图片分解频率聚集和梯状形,虽然JPEG使用8*8的DCT变换,在这里使用32*32的DCT变换。
第四步,缩小DCT。
虽然DCT的结果是32*32大小的矩阵,但我们只要保留左上角的8*8的矩阵,这部分呈现了图片中的最低频率。
第五步,计算平均值。
计算所有64个值的平均值。
第六步,进一步减小DCT。
这是最主要的一步,根据8*8的DCT矩阵,设置0或1的64位的hash值,大于等于DCT均值的设为”1”,小于DCT均值的设为“0”。结果并不能告诉我们真实性的低频率,只能粗略地告诉我们相对于平均值频率的相对比例。只要图片的整体结构保持不变,hash结果值就不变。能够避免伽马校正或颜色直方图被调整带来的影响。
第七步,计算哈希值。
将64bit设置成64位的长整型,组合的次序并不重要,只要保证所有图片都采用同样次序就行了。将32*32的DCT转换成32*32的图像。
将上一步的比较结果,组合在一起,就构成了一个64位的整数,这就是这张图片的指纹。组合的次序并不重要,只要保证所有图片都采用同样次序就行了(例如,自左到右、自顶向下、big-endian)。
得到指纹以后,就可以对比不同的图片,看看64位中有多少位是不一样的。在理论上,这等同于计算Hammingdistance)。如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值