RNN LSTM算法原理简介及Tutorial

本文介绍了LSTM(Long Short-Term Memory)算法的原理,作为深度学习中处理序列数据的一种特殊RNN,LSTM通过门限机制解决了传统RNN的梯度消失问题。文章还探讨了LSTM的训练方法——反向传播通过时间(BPTT),以及两种常见的LSTM变形:GRU和Peephole LSTM。最后,文章指出LSTM在实际应用中表现出色,证明了深度学习的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LSTM算法原理简介及Tutorial
一、背景
LSTM(Long Short-Term Memory)算法作为深度学习方法的一种,在介绍LSTM算法之前,有必要介绍一下深度学习(Deep Learning)的一些基本背景。

目前在机器学习领域,最大的热点毫无疑问是深度学习,从谷歌大脑(Google Brain)的猫脸识别[1],到ImageNet比赛中深度卷积神经网络的获胜[2],再到Alphago大胜李世石[3],深度学习受到媒体、学者以及相关研究人员越来越多的热捧。这背后的原因无非是深度学习方法的效果确实超越了传统机器学习方法许多。从2012年Geoffrey E. Hinton的团队在ImageNet比赛(图像识别中规模最大影响最大的比赛之一)中使用深度学习方法获胜[4]之后,关于深度学习的研究就呈井喷之势;在2012年以前,该比赛结果的准确率一直处于缓慢提升的状态,这一年突然有质的飞越,而从此之后深度学习方法也成为了ImageNet比赛中的不二选择。同时,深度学习的影响却不仅局限于图像识别比赛,也深刻影响了学术界和工业界,顶级的学术会议中关于深度学习的研究越来越多,如CVPR、ICML等等,而工业级也为深度学习立下了汗马功劳,贡献了越来越多的计算支持或者框架,如Nivdia的cuda、cuDnn,Google的tensorflow,Facebook的torch和微软的DMTK等等。

深度学习技术发展的背后是广大研究人员的付出,目前该领域内最著名的研究人员莫过于Yoshua Bengio,Geoffrey E. Hinton,Yann LeCun以及Andrew Ng。最近Yoshua Bengio等出版了《Deep Learning》[5]一书,其中对深度学习的历史发展以及该领域内的主要技术做了很系统的论述,其关于深度学习历史发展趋势的总结非常精辟,书中总结的深度学习历史发展趋势的几个关键点分别:

a)深度学习本身具有丰富悠久的历史,但是从不同的角度出发有很多不同得名,所以历史上其流行有过衰减趋势。
b)随着可以使用的训练数据量逐渐增加,深度学习的应用空间必将越来越大。
c)随着计算机硬件和深度学习软件基础架构的改善,深度学习模型的规模必将越来越大。
d)随着时

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值