【题目链接】
【算法】
gcd(i,n)是n的约数
不妨设gcd(i,n) = d
考虑枚举d和gcd(i,n) = d有多少个
gcd(i,n) = d
gcd(i/d,n/d) = 1
因为i<=n,所以i/d<=n/d
因此满足gcd(i,n) = d一共有phi(n/d)个
【代码】
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll i,n,ans;
template <typename T> inline void read(T &x) {
ll f = 1; x = 0;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
x *= f;
}
template <typename T> inline void write(T x) {
if (x < 0) { putchar('-'); x = -x; }
if (x > 9) write(x/10);
putchar(x%10+'0');
}
template <typename T> inline void writeln(T x) {
write(x);
puts("");
}
ll phi(ll x) {
ll i,ret=x;
for (i = 2; i <= sqrt(x); i++) {
if (x % i == 0) {
while (x % i == 0) x /= i;
ret = ret / i * (i - 1);
}
}
if (x > 1) ret = ret / x * (x - 1);
return ret;
}
int main() {
read(n);
for (i = 1; i <= sqrt(n); i++) {
if (n % i == 0) {
ans += phi(n/i) * i;
if (i * i != n) ans += phi(i) * n / i;
}
}
writeln(ans);
return 0;
}