py2exe的用法小汇

今天整理了一下py2exe的各种用法,此次仅仅整理出了一小部分,大部分的内容还是没有搜索到。郁闷中……网络上这方面的资料太少了,大部分都是重复的。。。。

 

console方式编译

setup(console=["consoles.py"])

windows方式编译

setup(windows=["windows.py"])

编译ico图标

setup(windows = [{"script":"ico.py", "icon_resources": [(1, "myico.ico")]} ])

一次编译多个文件

在编译的时候把多个文件以列表方式传递给setup即可:

setup(console=["my)one.py","my_two.py"])

setup(windows=["my)one.py","my_two.py"])

setup(console=["my_one.py", "my_two.py"], windows=["my_three.py"])

指定额外的文件

一些应用程序在运行时需要额外的文件,比如图片,或者其他文件。我们可以通过setup()函数的data_files参数来指定。格式大致如下:
[("目的目录1",["文件目录1","文件名1","文件目录2","文件名2",..."文件目录n","文件名n"]),("目的目录2",["文件目录1","文件名1","文件目录2","文件名2",..."文件目录n","文件名n"])]这种元组的形式包装成列表,传递给data_files就可以.这个列表里的元素都是成对出现的。

示范代码:
setup(windows=["test.py"],data_files=[("img",[r"d:/test/1.gif",r"d:/test/2.gif"]),("xml",[r"d:/test/1.xml",r"d:/test/2.xml"])])

这里将会在dist目录中创建两个目录img和xml,img目录里包含1.gif和2.gif这两个文件,xml目录中包含1.xml和2.xml这两个文件.如果不想创建新的目录img和xml那么只要讲这两个目录写成""空字符串就可以了,此时,py2exe会将指定文件复制到dist目录下。上面data_files是一个有两个元组作为元素的列表。第一个元组里面的img对应[r"d:/test/1.gif",r"d:/test/2.gif"] 这个有两个元素的列表,第二个元组里面的xml对应有两个元素的[r"d:/test/1.xml",r"d:/test/2.xml"]列表。

关于options和includes

includes = ["encodings", "encodings.*"]  
#要包含的其它库文件

options = {"py2exe":

    {"compressed": 1, #压缩
     "optimize": 2,
     "ascii": 1,
     "includes":includes,
     "bundle_files": 1 #所有文件打包成一个exe文件 }
    }

bundle_files项,值为1表示pyd和dll文件会被打包到exe文件中,且不能从文件系统中加载python模块;值为2表示pyd和dll文件会被打包到exe文件中,但是可以从文件系统中加载python模块

另外在setup中加入zipfile=None可以不生成library.zip。

一个标准的setup.py的代码如下:
#!/usr/bin/python
#filename:setup.py
#-*-coding:cp936-*-

from distutils.core import setup
import py2exe

 
includes = ["encodings", "encodings.*"]  
#要包含的其它库文件

options = {"py2exe":
    {"compressed": 1, #压缩
     "optimize": 2,
     "ascii": 1,
     "includes":includes,
     "bundle_files": 1 #所有文件打包成一个exe文件 }
    }
setup( 
    version = "XXX",
    description = "XXX",
    name = "XXX",  
    options = options,    
    zipfile=None,   #不生成library.zip文件
    console=[{"script": "hello.py", "icon_resources": [(1, "hello.ico")] }]#源文件,程序图标
    )

import sys from collections import deque import matplotlib.pyplot as plt import networkx as nx import numpy as np plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文显示问题 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 class MinCostFlowSourceSinkVisual: def __init__(self, n, edges, source, sink, visualize=True): """ :param n: 节点数 :param edges: 边列表 [(u, v, lb, ub, cost)] :param source: 源点 :param sink: 点 :param visualize: 是否可视化 """ self.n = n self.source = source self.sink = sink self.original_edges = edges.copy() # 保存原始边 self.visualize = visualize self.fig, self.ax = plt.subplots(figsize=(14, 10)) self.fig.suptitle("有源上下界费用流算法动态可视化", fontsize=16) # 初始化超级源 self.super_source = n self.super_sink = n + 1 self.total_nodes = n + 2 # 计算每个节点的流量差 self.A = [0] * (n + 2) for u, v, lb, ub, cost in self.original_edges: self.A[u] -= lb self.A[v] += lb # 添加源之间无限容量的边 edges.append((sink, source, 0, float('inf'), 0)) # 创建最小费用流数据结构 self.graph = [[] for _ in range(self.total_nodes)] self.dist = [float('inf')] * self.total_nodes self.vis = [False] * self.total_nodes self.pre = [-1] * self.total_nodes self.edge_info = {} # 存储边信息 self.total_cost = 0 # 总费用 # 添加图中的边 self.edge_refs = [] for i, (u, v, lb, ub, cost) in enumerate(edges): cap = ub - lb # 添加边并记录信息 self.add_edge(u, v, cap, cost, (i, lb, ub, cost, f"e{i}")) # 仅原始边(不包括后添加的sink->source边)记录在edge_refs中 if i < len(edges) - 1: # 最后一条是后添加的sink->source边 self.edge_refs.append((u, v, len(self.graph[u]) - 1, lb)) # 添加超级源的边 self.total_flow = 0 for i in range(n + 2): # 包含所有节点 if self.A[i] > 0: self.add_edge(self.super_source, i, self.A[i], 0, (f"S→{i}", "super_source")) self.total_flow += self.A[i] elif self.A[i] < 0: self.add_edge(i, self.super_sink, -self.A[i], 0, (f"{i}→T", "super_sink")) # 初始化可视化 if self.visualize: self.initialize_visualization() def add_edge(self, u, v, cap, cost, info=None): """添加边并存储信息""" forward = [v, cap, cost, 0, info] # [目标, 容量, 费用, 流量, 信息] reverse = [u, 0, -cost, 0, None] # 反向边 forward[3] = reverse reverse[3] = forward self.graph[u].append(forward) self.graph[v].append(reverse) # 存储边信息用于可视化 if info: self.edge_info[(u, v)] = { 'capacity': cap, 'cost': cost, 'flow': 0, 'info': info } return forward def spfa(self, s, t): """SPFA算法寻找最小费用增广路径""" self.dist = [float('inf')] * self.total_nodes self.vis = [False] * self.total_nodes self.pre = [-1] * self.total_nodes self.dist[s] = 0 self.vis[s] = True queue = deque([s]) # 可视化:显示SPFA开始 if self.visualize: self.visualize_step(f"SPFA: 从超级源点S开始寻找最小费用路径") plt.pause(0.5) while queue: u = queue.popleft() self.vis[u] = False for idx, edge in enumerate(self.graph[u]): v, cap, cost, rev, info = edge if cap > 0 and self.dist[u] + cost < self.dist[v]: self.dist[v] = self.dist[u] + cost self.pre[v] = (u, idx) # 记录前驱节点和边索引 # 可视化:更新节点距离 if self.visualize: node_label = self.get_node_label(v) self.visualize_step(f"SPFA: 更新 {node_label} 距离: {self.dist[v]}") plt.pause(0.3) if not self.vis[v]: self.vis[v] = True queue.append(v) return self.dist[t] < float('inf') def min_cost_flow(self): """计算最小费用流并动态可视化""" total_flow = 0 iteration = 1 while self.spfa(self.super_source, self.super_sink): # 计算增广路径上的最小容量 flow = float('inf') cur = self.super_sink path_nodes = [] while cur != self.super_source: u, idx = self.pre[cur] edge = self.graph[u][idx] path_nodes.append(cur) flow = min(flow, edge[1]) cur = u path_nodes.append(self.super_source) path_nodes.reverse() # 可视化:显示找到的增广路径 if self.visualize: path_desc = "→".join([self.get_node_label(n) for n in path_nodes]) self.visualize_step(f"找到增广路径: {path_desc}\n流量: {flow}, 费用: {self.dist[self.super_sink]}") plt.pause(1.5) # 更新增广路径上的流量 cur = self.super_sink path_edges = [] while cur != self.super_source: u, idx = self.pre[cur] edge = self.graph[u][idx] rev_edge = edge[3] # 更新边流量 edge[1] -= flow rev_edge[1] += flow edge[4] = edge[4] or {} # 确保info存在 edge[4]['flow'] = edge[4].get('flow', 0) + flow # 更新费用 self.total_cost += flow * edge[2] # 记录路径边用于可视化 path_edges.append((u, cur)) # 更新可视化信息 if (u, cur) in self.edge_info: self.edge_info[(u, cur)]['flow'] += flow elif (cur, u) in self.edge_info: # 处理反向边 self.edge_info[(cur, u)]['flow'] -= flow cur = u # 可视化:显示流量更新 if self.visualize: self.visualize_step(f"沿路径更新流量: {flow}\n累计费用: {self.total_cost}") plt.pause(0.8) total_flow += flow iteration += 1 # 检查可行解 if total_flow != self.total_flow: if self.visualize: self.visualize_step(f"无可行解!\n需求流量: {self.total_flow}, 实际流量: {total_flow}") plt.pause(3.0) return None, None # 计算原图中每条边的实际流量 flows = [] for u, v, idx, lb in self.edge_refs: # 跳过最后添加的sink->source边 if u == self.sink and v == self.source: continue edge = self.graph[u][idx] actual_flow = lb + edge[1] # 实际流量 = 下界 + 残余网络中的剩余容量 flows.append(actual_flow) if self.visualize: self.visualize_final_flow(flows) plt.pause(5.0) return flows, self.total_cost def get_node_label(self, node): """获取节点标签""" if node == self.super_source: return "S" elif node == self.super_sink: return "T" elif node == self.source: return f"源点({node})" elif node == self.sink: return f"点({node})" else: return f"{node}" def get_edge_description(self, u, v): """获取边的描述信息""" if u == self.super_source: return f"S → {v}" elif v == self.super_sink: return f"{u} → T" elif u == self.source and v == self.sink: return f"{u}→{v} (源边)" elif (u, v) in self.edge_info: info = self.edge_info[(u, v)]['info'] if isinstance(info, tuple) and len(info) > 3: return f"{u} → {v} ({info[4]})" return f"{u} → {v}" def initialize_visualization(self): """初始化可视化布局""" self.G = nx.DiGraph() # 添加节点 for i in range(self.n): self.G.add_node(i, label=f"{i}") self.G.add_node(self.super_source, label="S") self.G.add_node(self.super_sink, label="T") # 添加边 for u in range(self.total_nodes): for edge in self.graph[u]: v, cap, cost, _, info = edge if cap > 0: # 只添加正向边 self.G.add_edge(u, v, capacity=cap, cost=cost, flow=0) # 创建环形布局 self.pos = {} # 普通节点布置在圆上 angles = np.linspace(0, 2 * np.pi, self.n, endpoint=False) for i in range(self.n): angle = angles[i] self.pos[i] = (np.cos(angle), np.sin(angle)) # 特殊节点位置 self.pos[self.source] = (0, 1.2) # 源点在上方 self.pos[self.sink] = (0, -1.2) # 点在下方 self.pos[self.super_source] = (-1.5, 0) # 超级源点在左侧 self.pos[self.super_sink] = (1.5, 0) # 超级点在右侧 # 初始绘图 self.ax.clear() # 节点颜色:普通节点-浅蓝,源点-浅绿,超级源-浅红 node_colors = [] for node in self.G.nodes(): if node == self.source or node == self.sink: node_colors.append('lightgreen') elif node == self.super_source or node == self.super_sink: node_colors.append('salmon') else: node_colors.append('lightblue') nx.draw_networkx_nodes(self.G, self.pos, node_size=800, node_color=node_colors) nx.draw_networkx_labels(self.G, self.pos, labels={n: d['label'] for n, d in self.G.nodes(data=True)}) # 绘制边 self.edge_collection = nx.draw_networkx_edges( self.G, self.pos, arrowstyle='->', arrowsize=20, edge_color='gray', width=1, ax=self.ax ) # 初始化边标签 self.edge_labels = {} for u, v in self.G.edges(): self.edge_labels[(u, v)] = self.ax.text(0, 0, "", fontsize=8, ha='center', va='center') self.ax.set_title("初始化网络", fontsize=14) self.ax.set_axis_off() plt.tight_layout() plt.pause(2.0) def visualize_step(self, message): """可视化当前步骤""" self.ax.clear() # 节点颜色 node_colors = [] for node in self.G.nodes(): if node == self.source or node == self.sink: node_colors.append('lightgreen') elif node == self.super_source or node == self.super_sink: node_colors.append('salmon') else: node_colors.append('lightblue') # 绘制节点 nx.draw_networkx_nodes(self.G, self.pos, node_size=800, node_color=node_colors) nx.draw_networkx_labels(self.G, self.pos, labels={n: d['label'] for n, d in self.G.nodes(data=True)}) # 绘制边并设置颜色和宽度 edge_colors = [] edge_widths = [] for u, v in self.G.edges(): # 获取当前边的状态 cap = self.G[u][v]['capacity'] flow = self.edge_info.get((u, v), {}).get('flow', 0) # 计算饱和度 saturation = flow / cap if cap > 0 else 0 # 使用颜色表示饱和度 edge_colors.append(plt.cm.RdYlGn(saturation)) # 使用宽度表示流量 edge_widths.append(1 + 3 * saturation) # 绘制边 nx.draw_networkx_edges( self.G, self.pos, arrowstyle='->', arrowsize=20, edge_color=edge_colors, width=edge_widths, ax=self.ax ) # 更新边标签 for (u, v), text in self.edge_labels.items(): # 获取边信息 cap = self.G[u][v]['capacity'] cost = self.G[u][v]['cost'] flow = self.edge_info.get((u, v), {}).get('flow', 0) # 特殊边处理 if u == self.super_source or v == self.super_sink: label = f"{flow}/{cap}\n费用:0" else: # 获取原始边信息 info = self.edge_info.get((u, v), {}).get('info', None) if info and isinstance(info, tuple): _, lb, ub, cost_val, name = info actual_flow = lb + flow label = f"{name}: {actual_flow}/{ub}\n费用:{cost_val}\n[{lb},{ub}]" else: label = f"{flow}/{cap}\n费用:{cost}" # 计算边的中点位置 x = (self.pos[u][0] + self.pos[v][0]) / 2 y = (self.pos[u][1] + self.pos[v][1]) / 2 # 更新文本位置和内容 text.set_position((x, y)) text.set_text(label) self.ax.add_artist(text) # 显示当前信息 self.ax.set_title(f"{message}\n总费用: {self.total_cost}", fontsize=14) self.ax.set_axis_off() plt.tight_layout() plt.draw() def visualize_final_flow(self, flows): """可视化最终可行流分配(仅显示原图边)""" self.ax.clear() # 创建仅包含原图节点和边的子图 H = nx.DiGraph() for i in range(self.n): H.add_node(i, label=f"{i}") # 添加原图边(排除最后添加的sink->source边) for i, (u, v, lb, ub, cost) in enumerate(self.original_edges): if i >= len(flows): continue H.add_edge(u, v, flow=flows[i], lb=lb, ub=ub, cost=cost, name=f"e{i}") # 使用原布局,但只保留原图节点的位置 pos = {k: v for k, v in self.pos.items() if k in H.nodes()} # 绘制节点 node_colors = ['lightgreen' if node == self.source or node == self.sink else 'lightblue' for node in H.nodes()] nx.draw_networkx_nodes(H, pos, node_size=800, node_color=node_colors) nx.draw_networkx_labels(H, pos) # 绘制边并设置颜色和宽度 edge_colors = [] edge_widths = [] for u, v in H.edges(): flow = H[u][v]['flow'] ub = H[u][v]['ub'] saturation = flow / ub edge_colors.append(plt.cm.RdYlGn(saturation)) edge_widths.append(1 + 3 * saturation) nx.draw_networkx_edges( H, pos, arrowstyle='->', arrowsize=20, edge_color=edge_colors, width=edge_widths, ax=self.ax ) # 添加边标签 edge_labels = {} for u, v in H.edges(): flow = H[u][v]['flow'] lb = H[u][v]['lb'] ub = H[u][v]['ub'] cost = H[u][v]['cost'] name = H[u][v]['name'] edge_labels[(u, v)] = f"{name}: {flow}\n费用:{cost}\n[{lb},{ub}]" nx.draw_networkx_edge_labels(H, pos, edge_labels=edge_labels, font_size=8) self.ax.set_title(f"最小费用流分配结果(总费用: {self.total_cost})", fontsize=14) self.ax.set_axis_off() plt.tight_layout() plt.draw() def min_cost_flow_visual(n, edges, source, sink): """有源上下界费用流求解与可视化""" # 创建可视化实例 mcf_visual = MinCostFlowSourceSinkVisual(n, edges, source, sink, visualize=True) # 计算最小费用流 flows, total_cost = mcf_visual.min_cost_flow() if flows is None: print("无可行流解") return None, None print("\n各边实际流量分配和费用:") for i, (u, v, lb, ub, cost) in enumerate(edges[:-1]): # 排除最后添加的sink->source边 print(f"边 {u}→{v} ({lb},{ub}): 流量={flows[i]}, 费用={cost}") # 计算源点到点的总流量 source_flow = sum(flows[i] for i, (u, v, _, _, _) in enumerate(edges) if u == source) sink_flow = sum(flows[i] for i, (u, v, _, _, _) in enumerate(edges) if v == sink) print(f"\n源点({source})总输出流量: {source_flow}") print(f"点({sink})总输入流量: {sink_flow}") print(f"总费用: {total_cost}") plt.show() # 保持窗口打开 return flows, total_cost if __name__ == "__main__": # 15节点有可行解的网络示例 - 简化版 print("=" * 50) print("15节点网络的有源上下界费用流计算 (保证有可行解)") # 简化设计:确保网络平衡 n = 15 edges = [ # 源点→核心节点 (u, v, lb, ub, cost) (0, 1, 5, 10, 2), (0, 2, 5, 10, 3), # 核心环状结构 (1, 2, 0, 5, 1), (2, 3, 2, 8, 4), (3, 4, 2, 8, 2), (4, 1, 0, 5, 1), # 核心→中间节点 (1, 5, 1, 4, 3), (2, 6, 1, 4, 2), (3, 7, 1, 4, 4), (4, 8, 1, 4, 3), # 中间层平衡结构 (5, 6, 0, 5, 1), (6, 7, 0, 5, 2), (7, 8, 0, 5, 1), (8, 5, 0, 5, 3), # 中间→点 (5, 14, 3, 6, 5), (6, 14, 3, 6, 4), (7, 14, 2, 5, 3), (8, 14, 2, 5, 2), # 连接外围节点 (1, 9, 0, 3, 2), (2, 10, 0, 3, 3), (3, 11, 0, 3, 1), (4, 12, 0, 3, 2), (9, 13, 0, 3, 4), (10, 13, 0, 3, 2), (11, 13, 0, 3, 3), (12, 13, 0, 3, 1), (13, 14, 0, 5, 2) # 点入口 ] # 设置源点和点 source = 0 # 节点0作为源点 sink = 14 # 节点14作为点 # 计算并可视化最小费用流 flows, total_cost = min_cost_flow_visual(n, edges, source, sink) C:\Users\25827\.conda\envs\torch\python.exe C:\Users\25827\Desktop\图论代码\有源上下界费用流.py ================================================== 15节点网络的有源上下界费用流计算 (保证有可行解) Traceback (most recent call last): File "C:\Users\25827\Desktop\图论代码\有源上下界费用流.py", line 516, in <module> flows, total_cost = min_cost_flow_visual(n, edges, source, sink) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\25827\Desktop\图论代码\有源上下界费用流.py", line 442, in min_cost_flow_visual flows, total_cost = mcf_visual.min_cost_flow() ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\25827\Desktop\图论代码\有源上下界费用流.py", line 165, in min_cost_flow edge[4]['flow'] = edge[4].get('flow', 0) + flow ^^^^^^^^^^^ AttributeError: 'tuple' object has no attribute 'get' 进程已结束,退出代码为 1 给出修改后的完整代码
06-15
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值