防抖和节流

JavaScript函数优化:节流与防抖技术解析
本文深入探讨了JavaScript中两种重要的函数优化技术——节流和防抖。节流通过限制函数的执行频率,确保在特定时间间隔内只执行一次,防止频繁触发导致的性能问题。防抖则通过取消前一次未执行的定时任务,确保在最后一次操作后才执行函数,优化用户体验。文中提供了多种实现节流和防抖的函数示例,包括基础版本和加强版节流,以适应不同场景的需求。这两种技术常用于事件监听、滚动优化、输入延迟处理等场景。
  • 节流
核心思想: 如果在定时器的时间范围内再次触发,则不予理睬,等当前定时器完成,才能启动下一个定时器任务。
比如:等公交,公交不到点,再怎么嚷嚷都不行。
闭包
function throttle(fn, interval) {
  let flag = true;
  return function(...args) {
    let context = this;
    if (!flag) return;
    flag = false;
    setTimeout(() => {
      fn.apply(context, args);
      flag = true;
    }, interval);
  };
};
const throttle = function(fn, interval) {
  let last = 0;
  return function (...args) {
    let context = this;
    let now = +new Date();
    // 还没到时间
    if(now - last < interval) return;
    last = now;
    fn.apply(this, args)
  }
}

function throttle(fn, delay) {
    var timer;
    return function () {
        var _this = this;
        var args = arguments;
        if (timer) {
            return;
        }
        timer = setTimeout(function () {
            fn.apply(_this, args);
            timer = null; // 在delay后执行完fn之后清空timer,此时timer为假,throttle触发可以进入计时器
        }, delay)
    }
}
  • 防抖
核心思想: 每次事件触发则删除原来的定时器,建立新的定时器。以最后一次触发为准
闭包
function debounce(fn, delay) {
  let timer = null;
  return function (...args) { // ...args其实就是把调用的参数解构
    let context = this;
    if(timer) clearTimeout(timer);
    timer = setTimeout(function() {
      fn.apply(context, args); // apply后面跟的是数组 其实args就是arguments是个数组
    }, delay);
  }
}

function debounce(fn, delay) {
    var timer; // 维护一个 timer
    return function () {
        var _this = this; // 取debounce执行作用域的this
        var args = arguments;
        if (timer) {
            clearTimeout(timer);
        }
        timer = setTimeout(function () {
            fn.apply(_this, args); // 用apply指向调用debounce的对象,相当于_this.fn(args);
        }, delay);
    };
}
  • 加强版节流
防抖有时候触发的太频繁会导致一次响应都没有,我们希望到了固定的时间必须给用户一个响应,事实上很多前端库就是采取了这样的思路。
function throttle(fn, delay) {
  let last = 0, timer = null;
  return function (...args) {
    let context = this;
    let now = new Date();
    if(now - last < delay){
      clearTimeout(timer);
      setTimeout(function() {
        last = now;
        fn.apply(context, args);
      }, delay);
    } else {
      // 这个时候表示时间到了,必须给响应
      last = now;
      fn.apply(context, args);
    }
  }
}
(Mathcad+Simulink仿真)基于扩展描述函数法的LLC谐振变换器小信号分析设计内容概要:本文围绕“基于扩展描述函数法的LLC谐振变换器小信号分析设计”展开,结合Mathcad与Simulink仿真工具,系统研究LLC谐振变换器的小信号建模方法。重点利用扩展描述函数法(Extended Describing Function Method, EDF)对LLC变换器在非线性工作条件下的动态特性进行线性化近似,建立适用于频域分析的小信号模型,并通过Simulink仿真验证模型准确性。文中详细阐述了建模理论推导过程,包括谐振腔参数计算、开关网络等效处理、工作模态分析及频响特性提取,最后通过仿真对比验证了该方法在稳定性分析与控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/SimulinkMathcad工具,从事开关电源、DC-DC变换器或新能源变换系统研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握LLC谐振变换器的小信号建模难点与解决方案;②学习扩展描述函数法在非线性系统线性化中的应用;③实现高频LLC变换器的环路补偿与稳定性设计;④结合Mathcad进行公式推导与参数计算,利用Simulink完成动态仿真验证。; 阅读建议:建议读者结合Mathcad中的数学推导与Simulink仿真模型同步学习,重点关注EDF法的假设条件与适用范围,动手复现建模步骤频域分析过程,以深入理解LLC变换器的小信号行为及其在实际控制系统设计中的应用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值