POJ 3069

本文介绍了一个关于萨鲁曼军队部署的算法问题,旨在利用最少数量的具有特定范围的观察石来覆盖整个军队,确保每个士兵都在观察石的有效范围内。通过贪心策略解决了这一问题,并提供了详细的算法实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Saruman's Army
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 887 Accepted: 487

Description

Saruman the White must lead his army along a straight path from Isengard to Helm’s Deep. To keep track of his forces, Saruman distributes seeing stones, known as palantirs, among the troops. Each palantir has a maximum effective range of R units, and must be carried by some troop in the army (i.e., palantirs are not allowed to “free float” in mid-air). Help Saruman take control of Middle Earth by determining the minimum number of palantirs needed for Saruman to ensure that each of his minions is within R units of some palantir.

Input

The input test file will contain multiple cases. Each test case begins with a single line containing an integer R, the maximum effective range of all palantirs (where 0 ≤ R ≤ 1000), and an integer n, the number of troops in Saruman’s army (where 1 ≤ n ≤ 1000). The next line contains n integers, indicating the positions x1, …, xn of each troop (where 0 ≤ xi ≤ 1000). The end-of-file is marked by a test case with R = n = −1.

Output

For each test case, print a single integer indicating the minimum number of palantirs needed.

Sample Input

0 3
10 20 20
10 7
70 30 1 7 15 20 50
-1 -1

Sample Output

2
4

Hint

In the first test case, Saruman may place a palantir at positions 10 and 20. Here, note that a single palantir with range 0 can cover both of the troops at position 20.

In the second test case, Saruman can place palantirs at position 7 (covering troops at 1, 7, and 15), position 20 (covering positions 20 and 30), position 50, and position 70. Here, note that palantirs must be distributed among troops and are not allowed to “free float.” Thus, Saruman cannot place a palantir at position 60 to cover the troops at positions 50 and 70.

Source

-------------------------------------------------------------------------------------------------------------------------------------------------
难度: 1    代码:  1    分类: 贪心
分析:
将所有的点排序,从初始点的坐标+r作为预期最好的中心点,然后查找后面的点,如果正好是坐标点,否则就取最接近初始点+r的略小的那个点作为中心点,把所有坐标<=中心点+r的点都滤掉,以第一个>初始点+2r的点作为初始点继续贪心。
代码:
#include  < stdio.h >

int  pt[ 1000 ];

int  cmp( const   void   *  a, const   void   *  b)
{
    
return *((int *)a)-*((int *)b);
}


int  main()
{
    
int r,n,i,count;
    
int s,tag;
    
while(1)
    
{
        scanf(
"%d%d",&r,&n);
        
if(r==-1&&n==-1break;        
        
for(i=0;i<n;i++)
        
{
            scanf(
"%d",pt+i);
        }

        
        qsort(pt,n,
sizeof(int),cmp);
        s
=pt[0]+r;count=1;
        tag
=0;
        
for(i=0;i<n;)
        
{    
            
while(i<n&&pt[i]<s) i++;
            
if(i==n) break;
            
if(pt[i]==s)
            
{
                s
+=r;                                
            }

            
else
            
{
                s
=pt[i-1]+r;                                    
            }

            
while(i<n&&pt[i]<=s) i++;
                
if(i==n) break;                
                s
=pt[i]+r;
                count
++;
        }

        printf(
"%d ",count);
    }

}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值