1.自定义数据集(VOC格式)的准备
1.1. 将数据集按照以下路径存放到MMSeg目录
mmsegmentation
|--data
| |--VOCdevkit
| |--VOC2012
| |--Annotations
| |-- 01.xml
| |-- 02.xml
|
| |--ImageSets
| |-- Main
| |-- Segmentation
|
| |-- JPEGImages
| |-- 01.jpg
| |-- 02.jpg
|
| |-- SegmentationClass
| |-- 01.png
| |-- 02.png|
1.2. 选择模型和预训练权重
1.3. 修改数据集配置文件
查看所选模型的配置文件,以训练DeepLabV3+为例:

(1) 修改数据集信息为:
'../_base_/datasets/pascal_voc12.py'
(2) 进入模型根目录文件修改classes数:configs/_base_/models/deeplabv3_r50-d8.py

(3) 进入voc数据集配置文件修改数据集类别信息:

(4) 进入训练参数配置文件修改预训练模型:configs/_base_/default_runtime.py

1.4. 每次修改完config文件需进行setup
python setup.py install
2. 模型训练
python tools/train.py config.py
以训练DeepLabV3+为例:
python tools/train.py configs/deeplabv3/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py
3. 模型图片批量推理
import os
import torch
import cv2
import argparse
import numpy as np
from pprint import pprint
from tqdm import tqdm
from mmseg.apis import init_model, inference_model
DEVICE = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
IMAGE_FILE_PATH = r"data/VOCdevkit/VOC2012/JPEGImages"
CONFIG = r'work_dirs/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512.py'
CHECKPOINT = r'work_dirs/deeplabv3_r50-d8_4xb4-40k_voc12aug-512x512/iter_40000.pth'
SAVE_DIR = r"work_dir\infer_results"
def parse_args():
parser = argparse.ArgumentParser(description='Visualize CAM')
parser.add_argument('--img', default=IMAGE_FILE_PATH, help='Image file')
parser.add_argument('--config', default=CONFIG, help='Config file')
parser.add_argument('--checkpoint', default=CHECKPOINT, help='Checkpoint file')
parser.add_argument('--device', default=DEVICE, help='device')
parser.add_argument('--save_dir', default=SAVE_DIR, help='save_dir')
args = parser.parse_args()
return args
def make_full_path(root_list, root_path):
file_full_path_list = []
for filename in root_list:
file_full_path = os.path.join(root_path, filename)
file_full_path_list.append(file_full_path)
return file_full_path_list
def read_filepath(root):
from natsort import natsorted
test_image_list = natsorted(os.listdir(root))
test_image_full_path_list = make_full_path(test_image_list, root)
return test_image_full_path_list
def apply_colormap(pred_mask):
color_map = {
0: [0, 0, 0], # black: background
1: [0, 255, 255], # yellow: careful
2: [255, 0, 0], # blue: passable
3: [0, 0, 255] # red: impassable
}
rgb_image = np.zeros((*pred_mask.shape, 3), dtype=np.uint8)
for key in color_map:
rgb_image[pred_mask == key] = color_map[key]
return rgb_image
def main():
args = parse_args()
model_mmseg = init_model(args.config, args.checkpoint, device=args.device)
for imgs in tqdm(read_filepath(args.img)):
result = inference_model(model_mmseg, imgs)
pred_mask = result.pred_sem_seg.data.squeeze(0).detach().cpu().numpy().astype(np.uint8)
colored_mask = apply_colormap(pred_mask)
save_path = os.path.join(args.save_dir, f"{os.path.basename(args.config).split('.')[0]}")
if not os.path.exists(save_path):
os.makedirs(save_path)
cv2.imwrite(os.path.join(save_path, f"{os.path.basename(result.img_path).split('.')[0]}.png"), colored_mask,
[cv2.IMWRITE_PNG_COMPRESSION, 0])
if __name__ == '__main__':
main()
MMLab相关指令:
【目标检测】MMDetection常用指令_model.show_result_ericdiii的博客-优快云博客文章浏览阅读1.6k次,点赞2次,收藏5次。目标检测MMDetection库常用指令_model.show_result
https://blog.youkuaiyun.com/ericdiii/article/details/125722277?spm=1001.2014.3001.5502【目标检测】使用MMDetection训练自定义COCO格式数据集_mmdetection训练自己的coco数据集-优快云博客文章浏览阅读1.9k次,点赞3次,收藏19次。使用MMDetection训练自定义COCO格式数据集_mmdetection训练自己的coco数据集
https://blog.youkuaiyun.com/ericdiii/article/details/126812948?spm=1001.2014.3001.5501

本文详细介绍了如何在MMSeg中准备VOC格式的数据集,选择并修改模型配置,如DeepLabV3,以及进行模型训练和图片批量推理的过程。同时提到了与MMDetection库相关的目标检测和自定义COCO数据集的训练示例。
2193





