java 泛型小结

本文深入探讨了Java中的泛型技术,包括泛型类、泛型方法、类型变量限制、泛型通配符以及泛型的擦除等关键概念,并通过实例展示了如何在实际开发中灵活运用泛型增强程序的灵活性。

java中的泛型技术,使得对象类型不在是固定的,而是可以作为参数来指定,比较常用的代码如下

List<Integer> ls=new ArrayList<Integer>()
没有泛型时List默认装载的是Object类对象,所以在取出元素的时候需要强制类型转换成为元素本身的类型。

使用泛型技术,事先指定了这个List装载的对象类型就是Integer,所以在取出元素时不需要再进行类型转换。

泛型类:

在声明一个类的时候,添加类型变量作为它的参数,就构成了一个泛型类。一个简单的例子如下。

package array;


class MyValue{
	private T value1;
	private Integer value2;
	MyValue(T t1,Integer t2){
		this.value1=t1;
		this.value2=t2;
	}
	public T getValue1(){
		return value1;
	}
	public Integer getValue2(){
		return value2;
	}
}
public class genericity {

	public static void main(String[] args) {
		// TODO Auto-generated method stub
		MyValue mv4=new MyValue(5,"5");
		MyValue mv1=new MyValue("god",5);
		MyValue mv2=new MyValue(5,"good");
		System.out.println("mv1 value2="+mv1.getValue2());
		System.out.println("mv2 value2="+mv2.getValue2());
		mv1.getValue2();
		mv2.getValue2();
	}

}
在创建类对象时,才指定类中两个参数的类型,通过使用泛型类可以使程序有更大的灵活性,成员变量与方法的类型可以在实际调用时再确定,而不必像原来在开发时就确定。

泛型方法:
在方法中也可以带有一个或者多个类型参数,泛型方法可以在普通类和泛型类中定义,一般以静态方法居多。
public static <T>T getLast(T[] a){
		return a[a.length-1];
	}
这个方法用于返回T类型数组的最后一个元素,而T类型可以在运行的时候再指定。

类型变量的限制:
使用 类型变量 extends  限定类型序列如:
T extends Number&Comparable&Serializable
则类型变量T的类型只能是Number的子类并且要实现Comparable和Serializable接口。这里Integer类型是符合的String类型不符合,所以不能把T指定为String类型。

泛型通配符:
在使用泛型时,如果 A是B的子类,但是G<A>并不能看做G<B>使用,这和继承不同,如果要让一种泛型匹配其他的泛型,可以使用?符号,ArrayList<?>表示可以接受ArrayList<任意具体类型>
ArrayList<String> as=new ArrayList<String>();
ArrayList<?> ao=new ArrayList<Object>();
ao=as; //若使用ArrayList<Object> ao=new ArrayList<Object>();则会报错。
使用泛型通配符需要注意,泛型通配符只能用于引用声明中,不可以使用采用了泛型通配符的
也可以对泛型通配符进行限制 ?  extends 类名或者接口名

泛型的擦除:
如果在调用一个声明了泛型参数的类时不给出泛型参数的类型,系统会自动按照一定的规则来设置泛型参数的类型,这就是泛型的擦除。
使用泛型时要注意一些限制这些限制大部分是由自动擦除引起的。
限制有:
类型参数可以指定的类型中不包括基本类型,如 MyValue<int>非法,MyValue<Integer>可以。
不能在静态成员中使用类型变量。
public class Myclass<T>
{
    public static T getValue();
}
类型变量实际代表的类型要在类创建的时候才会给出,而静态方法只要类加载就可以调用,所以这一段代码不能通过编译。
数组,不能再数组声明中使用泛型,如下代码不能通过编译:
MyValue <String>[] mv=new MyValue<String>[10];
泛型的 instanceof检查,
mylist instanceof ArrayList<Integer>
mylist instanceof ArrayList<String>
以上两段代码检查结果是一样的,它只对不包括泛型的部分(ArrayList)进行检查。

下面一段是对HashMap按key排序的代码。
Set<String> keySet = map.keySet();
<span style="white-space:pre">	</span>List<String> keylist=new ArrayList<String>();
<span style="white-space:pre">	</span>for(String k:keySet){
<span style="white-space:pre">		</span>keylist.add(k);
<span style="white-space:pre">	</span>}
<span style="white-space:pre">	</span>Collections.sort(keylist);
<span style="white-space:pre">	</span>for(Iterator<String> ite = keylist.iterator(); ite.hasNext();) {
<span style="white-space:pre">	</span>    String temp = ite.next();
<span style="white-space:pre">	</span>    System.out.println("key-value: "+temp+","+map.get(temp));
<span style="white-space:pre">	</span>}
如果想要按字典的降序排列,则需改写sort方法里面的比较器Comparator:
Collections.sort(keySet, new Comparator() {
    public int compare(Object o1, Object o2) {
       if(Integer.parseInt(o1.toString())>Integer.parseInt(o2.toString())
            return 1;
       if(Integer.parseInt(o1.toString())==Integer.parseInt(o2.toString())
           return 0;
        else
            return -1;
    }
});





该数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类为日期时间,记录了每个数据点的采集时刻。序列起始于2024年12月24日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能与潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模实现故障预测与诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化与典故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值