Redis作者谈Redis应用场景

Redis作者antirez分享了Redis适用的场景,包括获取最新数据、排行榜、精准过期设定、计数器、排重、实时系统、消息队列及缓存等功能。

转自:http://blog.youkuaiyun.com/xymyeah/article/details/6578422


毫无疑问,Redis开创了一种新的数据存储思路,使用Redis,我们不用在面对功能单调的数据库时,把精力放在如何把大象放进冰箱这样的问题上,而是利用Redis灵活多变的数据结构和数据操作,为不同的大象构建不同的冰箱。希望你喜欢这个比喻。

下面是一篇新鲜出炉的文章,其作者是Redis作者@antirez,他描述了Redis比较适合的一些应用场景,NoSQLFan简单列举在这里,供大家一览:

1.取最新N个数据的操作

比如典型的取你网站的最新文章,通过下面方式,我们可以将最新的5000条评论的ID放在Redis的List集合中,并将超出集合部分从数据库获取

  • 使用LPUSH latest.comments<ID>命令,向list集合中插入数据
  • 插入完成后再用LTRIM latest.comments 0 5000命令使其永远只保存最近5000个ID
  • 然后我们在客户端获取某一页评论时可以用下面的逻辑(伪代码)
FUNCTION get_latest_comments(start,num_items):
    id_list = redis.lrange("latest.comments",start,start+num_items-1)
    IF id_list.length < num_items
        id_list = SQL_DB("SELECT ... ORDER BY time LIMIT ...")
    END
    RETURN id_list
END

如果你还有不同的筛选维度,比如某个分类的最新N条,那么你可以再建一个按此分类的List,只存ID的话,Redis是非常高效的。

2.排行榜应用,取TOP N操作

这个需求与上面需求的不同之处在于,前面操作以时间为权重,这个是以某个条件为权重,比如按顶的次数排序,这时候就需要我们的sorted set出马了,将你要排序的值设置成sorted set的score,将具体的数据设置成相应的value,每次只需要执行一条ZADD命令即可。

3.需要精准设定过期时间的应用

比如你可以把上面说到的sorted set的score值设置成过期时间的时间戳,那么就可以简单地通过过期时间排序,定时清除过期数据了,不仅是清除Redis中的过期数据,你完全可以把Redis里这个过期时间当成是对数据库中数据的索引,用Redis来找出哪些数据需要过期删除,然后再精准地从数据库中删除相应的记录。

4.计数器应用

Redis的命令都是原子性的,你可以轻松地利用INCR,DECR命令来构建计数器系统。

5.Uniq操作,获取某段时间所有数据排重值

这个使用Redis的set数据结构最合适了,只需要不断地将数据往set中扔就行了,set意为集合,所以会自动排重。

6.实时系统,反垃圾系统

通过上面说到的set功能,你可以知道一个终端用户是否进行了某个操作,可以找到其操作的集合并进行分析统计对比等。没有做不到,只有想不到。

7.Pub/Sub构建实时消息系统

Redis的Pub/Sub系统可以构建实时的消息系统,比如很多用Pub/Sub构建的实时聊天系统的例子。

8.构建队列系统

使用list可以构建队列系统,使用sorted set甚至可以构建有优先级的队列系统。

9.缓存

这个不必说了,性能优于Memcached,数据结构更多样化。

来源:antirez.com

【SCI复现】含可再生能源与储能的区域微电网最优运行:应对不确定性的解鲁棒性与非预见性研究(Matlab代码实现)内容概要:本文围绕含可再生能源与储能的区域微电网最优运行展开研究,重点探讨应对不确定性的解鲁棒性与非预见性策略,通过Matlab代码实现SCI论文复现。研究涵盖多阶段鲁棒调度模型、机会约束规划、需求响应机制及储能系统优化配置,结合风电、光伏等可再生能源出力的不确定性建模,提出兼顾系统经济性与鲁棒性的优化运行方案。文中详细展示了模型构建、算法设计(如C&CG算法、大M法)及仿真验证全过程,适用于微电网能量管理、电力系统优化调度等领域的科研与工程实践。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事微电网、能源管理相关工作的工程技术人员。; 使用场景及目标:①复现SCI级微电网鲁棒优化研究成果,掌握应对风光负荷不确定性的建模与求解方法;②深入理解两阶段鲁棒优化、分布鲁棒优化、机会约束规划等先进优化方法在能源系统中的实际应用;③为撰写高水平学术论文或开展相关课题研究提供代码参考和技术支持。; 阅读建议:建议读者结合文档提供的Matlab代码逐模块学习,重点关注不确定性建模、鲁棒优化模型构建与求解流程,并尝试在不同场景下调试与扩展代码,以深化对微电网优化运行机制的理解。
个人防护装备实例分割数据集 一、基础信息 数据集名称:个人防护装备实例分割数据集 图片数量: 训练集:4,524张图片 分类类别: - Gloves(手套):工作人员佩戴的手部防护装备。 - Helmet(安全帽):头部防护装备。 - No-Gloves(未戴手套):未佩戴手部防护的状态。 - No-Helmet(未戴安全帽):未佩戴头部防护的状态。 - No-Shoes(未穿安全鞋):未佩戴足部防护的状态。 - No-Vest(未穿安全背心):未佩戴身体防护的状态。 - Shoes(安全鞋):足部防护装备。 - Vest(安全背心):身体防护装备。 标注格式:YOLO格式,包含实例分割的多边形坐标和类别标签,适用于实例分割任务。 数据格式:来源于实际场景图像,适用于计算机视觉模型训练。 二、适用场景 工作场所安全监控系统开发:数据集支持实例分割任务,帮助构建能够自动识别工作人员个人防护装备穿戴状态的AI模型,提升工作环境安全性。 建筑与工业安全检查:集成至监控系统,实时检测PPE穿戴情况,预防安全事故,确保合规性。 学术研究与创新:支持计算机视觉在职业安全领域的应用研究,促进AI与安全工程的结合。 培训与教育:可用于安全培训课程,演示PPE识别技术,增强员工安全意识。 三、数据集优势 精准标注与多样性:每个实例均用多边形精确标注,确保分割边界准确;覆盖多种PPE物品及未穿戴状态,增加模型鲁棒性。 场景丰富:数据来源于多样环境,提升模型在不同场景下的泛化能力。 任务适配性强:标注兼容主流深度学习框架(如YOLO),可直接用于实例分割模型开发,支持目标检测和分割任务。 实用价值高:专注于工作场所安全,为自动化的PPE检测提供可靠数据支撑,有助于减少工伤事故。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值