【JZOJ5781】秘密通道

本文介绍了一道名为‘秘密通道’的问题,涉及一副包含墙、起点、终点和空地的地图。主角可以移动、发射子弹创建秘密通道以及通过通道。任务是求出从起点到终点的最短时间。给出了使用SPFA算法解决此问题的思路,以及错误示例和正确解题方法。

problem

Description
有一副n*m的地图,有n*m块地,每块是下列四种中的一种:
墙:用#表示,墙有4个面,分别是前面,后面,左面,右面。
起点:用C表示,为主角的起点,是一片空地。
终点:用F表示,为主角的目的地,是一片空地。
空地:用 . 表示。
其中除了墙不能穿过,其他地方都能走。

主角有以下3种操作:
1.移动到相邻的前后左右的地方,花费一个单位时间。
2.向前后左右其中一个方向发射子弹,子弹沿直线穿过,打在最近的一堵墙的一面,然后墙的这面就会形成一个开口通往秘密通道。同一时间最多只能有两个开口,若出现有3个开口,出现时间最早的开口会立即消失。该操作不用时间。
3.可以从一个与开口相邻的空地跳进去,进入秘密通道,从另外一个开口正对的空地跳出来。这个过程花费一个单位时间。

地图四周都是墙,问主角最少用多少时间从C走到F。C和F
只会出现一次。

Input
第一行输入两个正整数n,m。
接下来n行,每行m个字符描述地图。

Output
输出1个整数,表示最短时间完成路途。如果无解输出nemoguce

Sample Input
Input 1
4 4

#

.F

C.

#

Input 2
6 8

#

.##..F

C.##..

..#…

…..

#

Input 3
4 5

#

C#.

F

#

Sample Output
Output 1
2
Output 2
4
Output 3
nemoguce

Data Constraint
对于50%的数据,4≤ n,m≤ 15。
对于100%的数据,4≤ n,m≤ 500。

Hint
总共用到8次操作,时间之和为4。如下图所示
1.向左射一枪,在(3,1)的右面出现开口。
2.向下射一枪,在(6,2)的上面出现开口。
3.向左从(3,1)进入秘密通道,从(6,2)中出来,到达(5,2)。用1单位时间。
4.向右射一枪,在(5,7)的左面出现开口,(3,1)右面的开口消失。
5.走进(6,2)的开口,出来到(5,6)。用1单位时间。
6.向上射一枪,在(1,6)的下面出现开口。
7.经过秘密通道,走到(2,6)。用1单位时间。
8.走到终点。用1单位时间。


analysis

  • 正解SPFA……考场写了我3h的bfs 真是沙雕

  • 对于每个点两种连边方式

  • 一种是上下左右连通的点,边权为11

  • 一种是找到离上下左右最近的那堵墙,设距离为 k ,向最近的墙连边权为

### 解题思路 题目要求解决的是一个与图相关的小覆盖题,通常在特定条件下可以通过状态压缩动态规划(State Compression Dynamic Programming, SCDP)来高效求解。由于状态压缩的适用条件是状态维度较小(例如K≤10),因此可以利用二进制表示状态集合,从而优化计算过程。 #### 1. 状态表示 - 使用一个整数 `mask` 表示当前选择的点集,其中第 `i` 位为 `1` 表示第 `i` 个节点被选中。 - 定义 `dp[mask]` 表示在选中 `mask` 所代表的点集后,能够覆盖的节点集合。 - 可以通过预处理每个点的邻域信息(包括自身和所有直接连接的点),快速更新状态。 #### 2. 预处理邻域 对于每个节点 `u`,预先计算其邻域范围 `neighbor[u]`,即从该节点出发一步能到达的所有节点集合。这样,在后续的状态转移过程中,可以直接使用这些信息进行合并操作。 #### 3. 状态转移 - 初始化:对每个单独节点 `u`,设置初始状态 `dp[1 << u] = neighbor[u]`。 - 转移规则:对于任意两个状态 `mask1` 和 `mask2`,如果它们没有交集,则可以通过合并这两个状态得到新的状态 `mask = mask1 | mask2`,并更新对应的覆盖范围为 `dp[mask1] ∪ dp[mask2]`。 - 在所有状态生成之后,检查是否某个状态的覆盖范围等于全集(即覆盖了所有节点)。如果是,则记录此时使用的少节点数量。 #### 4. 优解提取 遍历所有可能的状态,找出能够覆盖整个图的小节点数目。 --- ### 时间复杂度分析 - 状态总数为 $ O(2^K) $,其中 `K` 是关键点的数量。 - 每次状态转移需要枚举所有可能的子集组合,复杂度为 $ O(2^K \cdot K^2) $。 - 整体时间复杂度控制在可接受范围内,适用于 `K ≤ 10~20` 的情况。 --- ### 代码实现(状态压缩 DP) ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 25; int neighbor[MAXN]; // 每个节点的邻域 int dp[1 << 20]; // dp[mask] 表示选中的点集合为 mask 时所能覆盖的点集合 int min_nodes; // 小覆盖点数 void solve(int n, vector<vector<int>>& graph) { // 预处理每个节点的邻域 for (int i = 0; i < n; ++i) { neighbor[i] = (1 << i); // 包括自己 for (int j : graph[i]) { neighbor[i] |= (1 << j); } } // 初始化 dp 数组 memset(dp, 0x3f, sizeof(dp)); for (int i = 0; i < n; ++i) { dp[1 << i] = neighbor[i]; } // 状态转移 for (int mask = 1; mask < (1 << n); ++mask) { if (__builtin_popcount(mask) >= min_nodes) continue; // 剪枝 for (int sub = mask & (mask - 1); sub; sub = (sub - 1) & mask) { int comp = mask ^ sub; if (comp == 0) continue; int new_mask = mask; int covered = dp[sub] | dp[comp]; if (covered == (1 << n) - 1) { min_nodes = min(min_nodes, __builtin_popcount(new_mask)); } dp[new_mask] = min(dp[new_mask], covered); } } } int main() { int n, m; cin >> n >> m; vector<vector<int>> graph(n); for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; graph[u].push_back(v); graph[v].push_back(u); // 无向图 } min_nodes = n; solve(n, graph); cout << "Minimum nodes required: " << min_nodes << endl; return 0; } ``` --- ### 优化策略 - **剪枝**:当当前状态所用节点数已经超过已知优解时,跳过后续计算。 - **提前终止**:一旦发现某个状态覆盖了全部节点,并且节点数达到理论下限,即可提前结束程序。 - **空间优化**:可以仅保存当前轮次的状态,减少内存占用。 --- ### 总结 本题通过状态压缩动态规划的方法,将原本指数级复杂度的题压缩到可接受范围内。结合位运算技巧和预处理机制,能够高效地完成状态转移和覆盖判断操作。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值