JQdata通过财务数据计算日数据和30分钟数据的换手率

本文介绍如何使用jqdata API获取股票的日交易数据和财务数据,计算换手率,并将其整合到日线和30分钟线数据中。通过Python代码实现数据处理,包括成交量、成交额的单位转换,以及数据的合并与保存。

jqdata在提供基础数据的时候,并没有提供换手率这一数据,需要自己进行计算,本文将从财务数据里面计算出来换手率这一数据,合并到日数据和30分钟数据。

话不多说,直接上代码:

import pandas as pd
import jqdatasdk as JQ


stock_data_day_file = './data/day/'
stock_data_m30_file = './data/m30/'



# 获取日数据基本数据和财务数据
def get_day_data(stock,start_date,end_date):

    # 获取基本数据 =======================================================

    stock_pd = JQ.get_price(security=stock, start_date=start_date, end_date=end_date, frequency='1d',
                         fields=['open', 'high', 'low', 'close', 'avg', 'volume', 'money', 'high_limit', 'low_limit',
                                 'pre_close', 'factor', 'paused'], fq='post').dropna()

    # 股票数据小于100条的丢弃
    if stock_pd.shape[0] < 100:
        return None,pd.DataFrame({})

    stock_pd = stock_pd.reset_index()  # 去掉索引,把日期索引转化为列

    # 处理日期格式
    stock_pd['date'] = pd.to_datetime(stock_pd['index'].values).strftime(date_format='%Y%m%d')
    stock_pd['date'] = stock_pd['date'].astype(int)

    # 处理代码格式
    stock_pd['code'] = stock.split('.')[0]
    stock_pd['code'] = stock_pd['code'].astype(int)

    # 处理成交量为前复权成交量
    stock_pd['volume_fq'] = stock_pd['volume']
    stock_pd['volume'] = stock_pd['volume'] * stock_pd['factor'] / 100   #  /100 股转为手

    # 成交额单位转换 元转换为千元 money
    stock_pd['money'] = stock_pd['money'] / 1000

    # 计算涨跌幅
    stock_pd['pct_change'] = (stock_pd['close'] / stock_pd['pre_close'] - 1) * 100

    # 排序字段
    stock_pd = stock_pd[['code', 'date', 'open', 'high', 'low', 'close', 'avg', 'pre_close', 'pct_change','volume',
                         'money', 'high_limit','low_limit', 'volume_fq', 'factor', 'paused']]

    # print(stock_pd)
    # print(stock_pd.shape[0])

    #  获取财务数据   ==========================================================================
    #  circulating_cap    流通股本(万股)
    #  circulating_market_cap    流通市值(亿元)
    #  turnover_ratio    换手率(%)

    Query = JQ.query(JQ.valuation.circulating_cap,
                 JQ.valuation.market_cap,
                 JQ.valuation.turnover_ratio
                 ).filter(JQ.valuation.code.in_([stock]))
    panel = JQ.get_fundamentals_continuously(Query, end_date=end_date, count=stock_pd.shape[0])

    # 判断当前的股票代码是否在panel里面,是代表有数据,否代表无数据  债没有财务数据,不判断这里会报错
    if stock not in panel.minor_axis.values:
        return None,pd.DataFrame({})

    stock_finance_pd = panel.minor_xs(stock)
    stock_finance_pd = stock_finance_pd.reset_index() # 去掉索引,把日期索引转化为列

    # 处理日期
    stock_finance_pd['date'] = pd.to_datetime(stock_finance_pd['day'].values).strftime(date_format='%Y%m%d')
    stock_finance_pd['date'] = stock_finance_pd['date'].astype(int)

    # 处理代码格式
    stock_finance_pd['code'] = stock.split('.')[0]
    stock_finance_pd['code'] = stock_finance_pd['code'].astype(int)

    stock_finance_pd = stock_finance_pd[['code', 'date', 'circulating_cap', 'market_cap', 'turnover_ratio']]

    #  合并股票基础数据和财务数据==========================================================================

    stock_data = pd.merge(stock_pd, stock_finance_pd, on=['code', 'date'])

    stock_data = stock_data[['code', 'date', 'open', 'high', 'low', 'close', 'avg', 'pre_close',
                             'pct_change','volume','money', 'turnover_ratio','high_limit','low_limit',
                             'volume_fq', 'circulating_cap','market_cap','factor', 'paused']]

    save_path = stock_data_day_file + stock + '.csv'
    stock_data.to_csv(save_path, index=False)

    # 返回股票的复权因子,用来处理30分钟的成交量复权问题
    stock_factor = stock_data[['code','date','factor']]

    return save_path,stock_factor

# 获取30分钟基本数据
def get_m30_data(stock,stock_factor,start_date,end_date):

    stock_m30_pd = JQ.get_price(security=stock, start_date=start_date, end_date=end_date+' 23:59:59', frequency='30m',
                         fields=['open', 'high', 'low', 'close', 'volume', 'money'], fq='post')

    stock_m30_pd = stock_m30_pd.reset_index() # 去掉索引,把日期索引转化为列

    # 处理日期格式
    stock_m30_pd['date'] = pd.to_datetime(stock_m30_pd['index'].values).strftime(date_format='%Y%m%d')
    stock_m30_pd['date'] = stock_m30_pd['date'].astype(int)

    # 处理时间格式  原时间为10:00-15:00  处理为9:30-14:30
    stock_m30_pd['time'] = (pd.to_datetime(stock_m30_pd['index'].values) - pd.Timedelta(minutes=30)).strftime(date_format='%H%M')
    stock_m30_pd['time'] = stock_m30_pd['time'].astype(int)

    # 处理代码格式
    stock_m30_pd['code'] = stock.split('.')[0]
    stock_m30_pd['code'] = stock_m30_pd['code'].astype(int)

    stock_m30_pd = stock_m30_pd[['code', 'date', 'time', 'open', 'high', 'low', 'close', 'volume', 'money']]

    # 处理成交量复权问题
    stock_m30_data = pd.merge(stock_m30_pd,stock_factor, on=['code','date'])
    stock_m30_data['volume'] = stock_m30_data['volume'] * stock_m30_data['factor'] / 100 # /100 成交量股转为手

    # 成交额单位转换 元转换为千元 money
    stock_m30_data['money'] = stock_m30_data['money'] / 1000

    save_path = stock_data_m30_file + stock + '_m30.csv'
    stock_m30_data.to_csv(save_path,index=False)

    return save_path



def query_spare():
    # 判断当日查询条数余额
    spare = JQ.get_query_count()['spare']
    if spare < 50000:
        print('spare',spare)
        sys.exit()
    return spare


def main(start_date,end_date):
    JQ.auth(username='1300000000', password=‘000000')

    # 获取数据已经下载完成的股票代码
    stocks_download_list = []
    for name in os.listdir(stock_data_day_file):
        if name[-4:] == '.csv':
            stocks_download_list.append(str(name[:-4]))

    # 获取所有股票代码
    stocks_all_list = list(JQ.get_all_securities(['stock']).index)
    # stocks_all_list = ['600631.XSHG']

    # 去掉已经下载完成的股票代码
    stocks_list = list(set(stocks_all_list).difference(set(stocks_download_list)))

    nums = 1
    for stock in stocks_list:
        spare = query_spare()
        day_save_path, stock_factor = get_day_data(stock,start_date,end_date)
        if stock_factor.shape[0] == 0:
            print(stock,' data error...')
            continue
        m30_save_path = get_m30_data(stock,stock_factor,start_date,end_date)
        print(nums,len(stocks_list),day_save_path,m30_save_path,spare)
        stocks_download_list.append(stock)
        nums += 1

if __name__ == '__main__':
    import os,sys,json
    end_date = sys.argv[1] # format : %Y-%m-%d
    # end_date = '2018-12-28'
    start_date = '2010-01-01'

    main(start_date,end_date)
``` {智能估值体系V14} 大盘过滤:=INDEXC>MA(INDEXC,60) AND INDEXC>MA(INDEXC,120); {新增大盘趋势过滤器} DYNPETTM:=IF(FINANCE(1)>300000000 AND FINANCE(4)>150000000, CLOSE/((FINANCE(1)/MAX(FINANCE(4),120000000)+0.000001)*0.82)* {优化系数至0.82} (1+0.18*INDUSTRYF(1013)),1000); {替换为通达信行业函数} PB_RATE:=IF(FINANCE(34)>0.88 AND CLOSE>5.5, CLOSE/((FINANCE(34)*0.88+REF(FINANCE(34),1)*0.12)*0.95+0.000001),1000); {优化权重参数} {修正PEG计算V5} PEG_VAL:=DYNPETTM/MAX(FINANCE(30)/REF(MAX(FINANCE(30),0.01),4),1.28); {调整分母系数至1.28} {分形波动率V21} VAR_PERIOD:=IF(VOLATILITY(89)<0.018,377, {替换为通达信波动率函数} IF(VOLATILITY(89)<0.04,233,89)); SLOW_LEN:=IF(VOLATILITY(89)>0.2,INT(VAR_PERIOD*1.618),CEILING(VAR_PERIOD*2.118)); {行业轮动V14} HY_RET:=EMA((INDEXC/REF(INDEXC,5)-1)*100,5)*1.42; {增强行业动量系数} TRANS_MAT:=EMA((SUM((IND_RATIO>REF(IND_RATIO,5))*(REF(IND_RATIO,5)>REF(IND_RATIO,21)),21)+ SUM((IND_RATIO>REF(IND_RATIO,5))*(REF(IND_RATIO,5)>REF(IND_RATIO,34)),34))/2/ (SUM(REF(IND_RATIO,5)>REF(IND_RATIO,21),55)+0.0001),5)*1.15; {增加过渡矩阵权重} {行业筛选V4} SECTOR_FLT:=SECTOR_STR>REF(SECTOR_STR,34)*1.22 {提升强度阈值} AND CTOP_SECT AND CROSS(EMA(SECTOR_STR,5),EMA(SECTOR_STR,13)) {缩短EMA周期} AND SLOPE(SECTOR_STR,3)>SLOPE(SECTOR_STR,8)*1.35; {增强斜率对比} {三维共振V7} DIF:=EMA(CLOSE,8)-EMA(CLOSE,21); {缩短周期提高灵敏度} DEA:=EMA(DIF,5); MACD_COND:=DIF>DEA AND DEA>REF(DEA,3); {新增趋势确认条件} {资金流向V6} BIGBUY:=SUM(IF(VOL/FINANCE(7)>=0.01 AND COUNT(VOL/FINANCE(7)>=0.008,3)=3, AMOUNT*0.82,0),3); {提高主力资金系数} FUNDFLOW:=(BIGBUY-BIGSELL)/FINANCE(7)*100*1.25; {增加资金流权重} {情绪启动V4} 情绪启动:=CROSS(MARKET_SENT,1.35) AND COUNT(MARKET_SENT>1.15,3)>=2 {提高触发阈值} AND CLOSE>EMA(CLOSE,233)*1.18; {新增趋势确认} {终极信号V8} 盘后选股:=大盘过滤 AND DYNPETTM<8.8 AND PB_RATE<1.65 {加入大盘过滤} AND PEG_VAL<0.48 {降低PEG阈值} AND EVERY(CLOSE>EMA(CLOSE,55),8) {延长趋势确认周期} AND FINANCE(30)/REF(MAX(FINANCE(30),0.01),4)>1.68 AND EVERY(VOL>MA(VOL,55)*1.35,5) {增加放量天数} AND MACD_COND AND CLOSE/EMA(CLOSE,55)>1.28 AND VOL/EMA(VOL,55)>1.55; {盘中预警V3} 盘中预警:CROSS(CLOSE,BOLL_UPPER) AND VOL>MA(VOL,34)*3.5 {新增布林带突破} AND FUNDFLOW>REF(FUNDFLOW,1)*1.25 AND 情绪启动 AND CLOSE>HHV(HIGH,21) AND 大盘过滤; {资金流验证V13} LHB_DATA:=FINANCE(244)/CAPITAL*100; {修正龙虎榜函数} CAPITAL_INFLOW:=SUM(AMO,8)/SUM(AMO,34)>0.95 {缩短统计周期} AND EVERY(V>REF(V,1)*1.25,5) AND (MAIN_FUND-REF(MAIN_FUND,5))/CAPITAL>0.18; {信号衰减模型V3} DECAY_WEIGHT:=EXP(-0.08*(BARSLAST(盘后选股))); //优化衰减系数 SIGNAL_EMA:EMA(盘后选股*DECAY_WEIGHT,8); DRAWICON(盘后选股 AND 盘中预警, LOW, 1);```你的身份是高级编程技术专家,精通各类编程语言,能对编程过程中的各类问题进行分析解答。我的问题是【使用Python构建回测系统测试选股代码的有效性?用2018-2024年全A股周期回测验证此代码选股逻辑的准确性胜率,评估月胜率达到多少?评估有效信号准确率达到多少?】,同时此代码还有什么可提升的空间,提出可行性的优化建议方案,如何选到选股胜率达到月胜率提高至75%以上,有效信号准确率95%以上,选到资金持续流入,股票市场情绪启动,盘中异动启动主升浪的股票,及线盘中预警选股盘后选股,并帮我调整参数并找到最佳选股参数计算关系信号触发条件。请帮我检查并改正错误点补全正确代码,,并替换为通达信支持的函数,生成调整优化后通达信完整代码。
04-03
内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估CPO优化流程。; 适合人群:具备一定Python编程基础优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值