题面
解法
考虑没有
L
L
操作的时候怎么做
显然主席树只要维护每一个点到根的东西,然后查询的时候直接在
x,y,lca(x,y),fa(lca(x,y))
x
,
y
,
l
c
a
(
x
,
y
)
,
f
a
(
l
c
a
(
x
,
y
)
)
这四棵树上跑就行了
但是现在有
L
L
了怎么办???
直接将小的并到大的上去,然后暴力重构小树中的倍增数组
时间复杂度:
代码
#include <bits/stdc++.h>
#define N 80010
using namespace std;
template <typename node> void read(node &x) {
x = 0; int f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
struct Edge {
int next, num;
} e[N * 4];
struct SegmentTree {
struct Node {
int lc, rc, cnt;
} t[N * 200];
int tot;
void Clear() {tot = 0;}
int siz(int x) {return t[x].cnt;}
int ins(int k, int l, int r, int x) {
int ret = ++tot; t[ret] = t[k]; t[ret].cnt++;
if (l == r) return ret; int mid = (l + r) >> 1;
if (x <= mid) t[ret].lc = ins(t[k].lc, l, mid, x);
else t[ret].rc = ins(t[k].rc, mid + 1, r, x);
return ret;
}
int query(int k1, int k2, int k3, int k4, int l, int r, int k) {
if (l == r) return l; int mid = (l + r) >> 1;
int tmp = siz(t[k1].lc) + siz(t[k2].lc) - siz(t[k3].lc) - siz(t[k4].lc);
if (k <= tmp) return query(t[k1].lc, t[k2].lc, t[k3].lc, t[k4].lc, l, mid, k);
return query(t[k1].rc, t[k2].rc, t[k3].rc, t[k4].rc, mid + 1, r, k - tmp);
}
} T;
int n, m, q, cnt, a[N], vis[N], col[N], d[N], siz[N], rt[N], r[N], f[N][21];
void add(int x, int y) {
e[++cnt] = (Edge) {e[x].next, y};
e[x].next = cnt;
}
void dfs(int x, int fa, int num) {
col[x] = num, d[x] = d[fa] + 1;
siz[x] = 1; vis[x] = 1;
rt[x] = T.ins(rt[fa], 1, 1e9, a[x]);
for (int i = 1; i <= 20; i++)
f[x][i] = f[f[x][i - 1]][i - 1];
for (int p = e[x].next; p; p = e[p].next) {
int k = e[p].num;
if (k == fa) continue; f[k][0] = x;
dfs(k, x, num); siz[x] += siz[k];
}
}
int lca(int x, int y) {
if (d[x] < d[y]) swap(x, y);
for (int i = 20; i >= 0; i--)
if (d[f[x][i]] >= d[y]) x = f[x][i];
if (x == y) return x;
for (int i = 20; i >= 0; i--)
if (f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
return f[x][0];
}
int main() {
int test; read(test);
read(n), read(m), read(q); cnt = n;
for (int i = 1; i <= n; i++) read(a[i]);
for (int i = 1; i <= m; i++) {
int x, y; read(x), read(y);
add(x, y), add(y, x);
}
int tot = 0, ans = 0;
for (int i = 1; i <= n; i++)
if (!vis[i]) dfs(i, 0, ++tot), r[tot] = i;
while (q--) {
char c = getchar();
while (!isalpha(c)) c = getchar();
int x, y; read(x), read(y);
if (c == 'Q') {
int k; read(k); x ^= ans, y ^= ans, k ^= ans;
int tx = lca(x, y), ty = f[tx][0];
ans = T.query(rt[x], rt[y], rt[tx], rt[ty], 1, 1e9, k);
cout << ans << "\n";
} else {
x ^= ans, y ^= ans;
int tx = r[col[x]], ty = r[col[y]];
if (siz[tx] > siz[ty]) swap(tx, ty), swap(x, y);
siz[ty] += siz[tx]; f[x][0] = y;
add(y, x), add(x, y); dfs(x, y, col[y]);
}
}
return 0;
}