大小端 网络字节序

本文详细解释了Little-Endian和Big-Endian两种字节序的概念及其内存布局方式,并提供了检查处理器字节序的方法。
定义如下:
a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端
b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端

c) 网络字节序:TCP/IP各层协议将字节序定义为Big-Endian,因此TCP/IP协议中使用的字节序通常称之为网络字节序。


我们以0x12345678为例:

小端结构:

Little-Endian: 低地址存放低位,如下图:
栈底 (高地址)
---------------
buf[3] (0x12) -- 高位
buf[2] (0x34)
buf[1] (0x56)
buf[0] (0x78) -- 低位
--------------
栈 顶 (低地址)


大端结构

Big-Endian: 低地址存放高位,如下图:
栈底 (高地址)
---------------
buf[3] (0x78) -- 低位
buf[2] (0x56)
buf[1] (0x34)
buf[0] (0x12) -- 高位
---------------
栈顶 (低地址)


如何检查处理器是Big-Endian还是Little-Endian?

由于联合体union的存放顺序是所有成员都从低地址开始存放,利用该特性就可以轻松地获得了CPU对内存采用Little- endian还是Big-endian模式读写。例如:
int checkCPUendian(){
union {
unsigned int a;
unsigned char b;            
}c;
c.a = 1;
return (c.b == 1);      

}   /*return 1 : little-endian, return 0:big-endian*/


总结:知道了大小端的原理,还会对每个字节内的位的排序有疑问,经测试,可按以下方法记忆:

我们以0x0200为例

内存地址:                        0x0001                         0x0000

位号:15  14  13  12  11  10  9  8  |   7  6  5  4  3  2  1  0

位值: 0    0    0    0    0    0   1  0  |   0  0  0  0  0  0  0  0   

### 嵌入式系统中大小端字节序的概念及应用 #### 大小端字节序定义 大端字节序(Big Endian)和小端字节序(Little Endian)是描述多字节数据在计算机内存中存储顺序的方式。对于一个多字节的数据,例如一个32位整数,在大端模式下,最高有效字节被存放在最低地址处;而在小端模式下,则相反,最低有效字节被存放在最低地址处[^2]。 #### 区别 两者的根本区别在于它们如何解释多字节对象的存储位置: - **大端字节序**:高位字节优先存储于低地址- **小端字节序**:低位字节优先存储于低地址。 这种差异直接影响到跨平台间的数据交换以及硬件设计的选择。当不同架构之间进行通信时,如果不统一字节序可能会导致错误解析接收到的信息[^1]。 #### 应用场景 在嵌入式领域内,字节序的应用非常广泛,尤其是在以下几个方面: - 数据传输过程中确保接收方能够按照发送方预期的方式来解读消息内容; - 文件格式规定特定编码方式以便兼容多种设备读取; - 设备驱动程序编写需考虑目标处理器支持何种类型的字节序列从而正确操作外设寄存器等资源。 #### 转换方法 实现大小端之间的相互转变可以通过软件层面完成也可以借助专门指令集加速处理速度。以下是几种常见的做法: ##### 使用标准库函数 C/C++语言提供了几个用于改变主机默认字节次序至网络通用形式(通常是big-endian)的标准APIs, 如htonl(), htons() ,ntohl(), ntohs(). 这些功能可以方便快捷地解决因体系结构引起的问题. ```c #include <arpa/inet.h> uint32_t host_to_network_long(uint32_t hostlong){ return htonl(hostlong); } ``` ##### 手动重组字节 另一种更为灵活但可能效率较低的方法就是手动调整每一个组成部分的位置关系直到达到期望的结果为止。这种方法尤其适用于那些没有现成工具可用的情况或者是针对特殊需求定制解决方案的时候[^3]。 ```python import struct def float_endian_swap(f): packed = struct.pack('f', f) swapped_bytes = bytearray(packed)[::-1] result = struct.unpack('f', bytes(swapped_bytes))[0] return result ``` 上述Python代码片段展示了如何利用`struct`模块先将浮点数值打包成二进制表示然后再颠倒其内部组成单元最终得到反转后的版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值