Security Descriptor String Format

The Security Descriptor String Format is a text format for storing or transporting information in a security descriptor. TheConvertSecurityDescriptorToStringSecurityDescriptor and ConvertStringSecurityDescriptorToSecurityDescriptor functions use this format.

The format is a null-terminated string with tokens to indicate each of the four main components of a security descriptor: owner (O:), primary group (G:), DACL (D:), and SACL (S:).

Note  Access control entries (ACEs) and conditional ACEs have differing formats. For ACEs, see ACE Strings. For conditional ACEs, see Security Descriptor Definition Language for Conditional ACEs.

C++
O:owner_sid
G:group_sid
D:dacl_flags(string_ace1)(string_ace2)... (string_acen)
S:sacl_flags(string_ace1)(string_ace2)... (string_acen)


owner_sid

SID string that identifies the object's owner.

group_sid

A SID string that identifies the object's primary group.

dacl_flags

Security descriptor control flags that apply to the DACL. For a description of these control flags, see the SetSecurityDescriptorControl function. The dacl_flags string can be a concatenation of zero or more of the following strings.

Control Constant in Sddl.h Meaning
"P" SDDL_PROTECTED The SE_DACL_PROTECTED flag is set.
"AR" SDDL_AUTO_INHERIT_REQ The SE_DACL_AUTO_INHERIT_REQ flag is set.
"AI" SDDL_AUTO_INHERITED The SE_DACL_AUTO_INHERITED flag is set.
"NO_ACCESS_CONTROL" SSDL_NULL_ACL The ACL is null.

 

sacl_flags

Security descriptor control flags that apply to the SACL. The sacl_flags string uses the same control bit strings as the dacl_flags string.

string_ace

A string that describes an ACE in the security descriptor's DACL or SACL. For a description of the ACE string format, see ACE strings. Each ACE string is enclosed in parentheses (()).

Unneeded components can be omitted from the security descriptor string. For example, if the SE_DACL_PRESENT flag is not set in the input security descriptor,ConvertSecurityDescriptorToStringSecurityDescriptor does not include a D: component in the output string. You can also use the SECURITY_INFORMATION bit flags to indicate the components to include in a security descriptor string.

The security descriptor string format does not support NULL ACLs.

To denote an empty ACL, the security descriptor string includes the D: or S: token with no additional string information.

The security descriptor string stores the SECURITY DESCRIPTOR CONTROL bits in different ways. The SE_DACL_PRESENT or SE_SACL_PRESENT bits are indicated by the presence of the D: or S: token in the string. Other bits that apply to the DACL or SACL are stored in dacl_flags and sacl_flags. The SE_OWNER_DEFAULTED, SE_GROUP_DEFAULTED, SE_DACL_DEFAULTED, and SE_SACL_DEFAULTED bits are not stored in a security descriptor string. The SE_SELF_RELATIVE bit is not stored in the string, but ConvertStringSecurityDescriptorToSecurityDescriptor always sets this bit in the output security descriptor.

The following examples show security descriptor strings and the information in the associated security descriptors.

String 1:

C++
"O:AOG:DAD:(A;;RPWPCCDCLCSWRCWDWOGA;;;S-1-0-0)"


Security Descriptor 1:

C++
    Revision:  0x00000001
    Control:   0x0004
        SE_DACL_PRESENT
    Owner: (S-1-5-32-548)
    PrimaryGroup: (S-1-5-21-397955417-626881126-188441444-512)
DACL
    Revision: 0x02
    Size:     0x001c
    AceCount: 0x0001
    Ace[00]
        AceType:       0x00 (ACCESS_ALLOWED_ACE_TYPE)
        AceSize:       0x0014
        InheritFlags:  0x00
        Access Mask:   0x100e003f
                            READ_CONTROL
                            WRITE_DAC
                            WRITE_OWNER
                            GENERIC_ALL
                            Others(0x0000003f)
        Ace Sid      : (S-1-0-0)
SACL
    Not present


String 2:

C++
"O:DAG:DAD:(A;;RPWPCCDCLCRCWOWDSDSW;;;SY)
(A;;RPWPCCDCLCRCWOWDSDSW;;;DA)
(OA;;CCDC;bf967aba-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;bf967a9c-0de6-11d0-a285-00aa003049e2;;AO)
(OA;;CCDC;6da8a4ff-0e52-11d0-a286-00aa003049e2;;AO)
(OA;;CCDC;bf967aa8-0de6-11d0-a285-00aa003049e2;;PO)
(A;;RPLCRC;;;AU)S:(AU;SAFA;WDWOSDWPCCDCSW;;;WD)"


Security Descriptor 2:

C++
    Revision:  0x00000001
    Control:   0x0014
        SE_DACL_PRESENT
        SE_SACL_PRESENT
    Owner: (S-1-5-21-397955417-626881126-188441444-512)
    PrimaryGroup: (S-1-5-21-397955417-626881126-188441444-512)
DACL
    Revision: 0x04
    Size:     0x0104
    AceCount: 0x0007
    Ace[00]
        AceType:       0x00 (ACCESS_ALLOWED_ACE_TYPE)
        AceSize:       0x0014
        InheritFlags:  0x00
        Access Mask:   0x000f003f
                            DELETE
                            READ_CONTROL
                            WRITE_DAC
                            WRITE_OWNER
                            Others(0x0000003f)
        Ace Sid:       (S-1-5-18)
    Ace[01]
        AceType:       0x00 (ACCESS_ALLOWED_ACE_TYPE)
        AceSize:       0x0024
        InheritFlags:  0x00
        Access Mask:   0x000f003f
                            DELETE
                            READ_CONTROL
                            WRITE_DAC
                            WRITE_OWNER
                            Others(0x0000003f)
        Ace Sid:       (S-1-5-21-397955417-626881126-188441444-512)
    Ace[02]
        AceType:       0x05 (ACCESS_ALLOWED_OBJECT_ACE_TYPE)
        AceSize:       0x002c
        InheritFlags:  0x00
        Access Mask:   0x00000003
                            Others(0x00000003)
        Flags:         0x00000001, ACE_OBJECT_TYPE_PRESENT
        ObjectType:    GUID_C_USER
        InhObjectType: GUID ptr is NULL
        Ace Sid:       (S-1-5-32-548)
    Ace[03]
        AceType:       0x05 (ACCESS_ALLOWED_OBJECT_ACE_TYPE)
        AceSize:       0x002c
        InheritFlags:  0x00
        Access Mask:   0x00000003
                            Others(0x00000003)
        Flags:         0x00000001, ACE_OBJECT_TYPE_PRESENT
        ObjectType:    GUID_C_GROUP
        InhObjectType: GUID ptr is NULL
        Ace Sid:       (S-1-5-32-548)
    Ace[04]
        AceType:       0x05 (ACCESS_ALLOWED_OBJECT_ACE_TYPE)
        AceSize:       0x002c
        InheritFlags:  0x00
        Access Mask:   0x00000003
                            Others(0x00000003)
        Flags:         0x00000001, ACE_OBJECT_TYPE_PRESENT
        ObjectType:    GUID_C_LOCALGROUP
        InhObjectType: GUID ptr is NULL
        Ace Sid:       (S-1-5-32-548)
    Ace[05]
        AceType:       0x05 (ACCESS_ALLOWED_OBJECT_ACE_TYPE)
        AceSize:       0x002c
        InheritFlags:  0x00
        Access Mask:   0x00000003
                            Others(0x00000003)
        Flags:         0x00000001, ACE_OBJECT_TYPE_PRESENT
        ObjectType:    GUID_C_PRINT_QUEUE
        InhObjectType: GUID ptr is NULL
        Ace Sid:       (S-1-5-32-550)
    Ace[06]
        AceType:       0x00 (ACCESS_ALLOWED_ACE_TYPE)
        AceSize:       0x0014
        InheritFlags:  0x00
        Access Mask:   0x00020014
                            READ_CONTROL
                            Others(0x00000014)
        Ace Sid:       (S-1-5-11)
    SACL
        Revision: 0x02
        Size:     0x001c
        AceCount: 0x0001
        Ace[00]
            AceType:       0x02 (SYSTEM_AUDIT_ACE_TYPE)
            AceSize:       0x0014
            InheritFlags:  0xc0
                SUCCESSFUL_ACCESS_ACE_FLAG
                FAILED_ACCESS_ACE_FLAG
            Access Mask:    0x000d002b
                                DELETE
                                WRITE_DAC
                                WRITE_OWNER
                                Others(0x0000002b)
            Ace Sid:       (S-1-1-0)


Related topics

ACE Strings

Security Descriptor Definition Language for Conditional ACEs


SDDL semantics will vary by context

Note: When an SDDL string is applied to a securable object the semantics will vary depending on the context.   For example the high-level security APIs ( SetNamedSecurityInfo, SetSecurityInfo) will apply the SDDL using cascade propagation while ignoring the AI and AR flags.  However, if you round-trip using the low-level security APIs (e.g., GetFileSecurity/ SetFileSecurity or  RegGetKeySecurity/ RegSetKeySecurity) the AI flag will be honored iff you include AR ("D:ARAI(A;OICI;FA;;;BU)").

03-19
### IEEE 802.1Q VLAN Tagging Protocol Standard IEEE 802.1Q 是支持虚拟局域网(VLAN)的标准协议之一,通常被称为 Dot1q。该标准定义了一种用于以太网帧的 VLAN 标记系统以及交换机和桥接器处理这些标记帧的操作流程[^2]。 #### 协议结构概述 IEEE 802.1Q 的核心功能在于通过在以太网数据帧中插入特定字段来实现 VLAN 标签的功能。这种标签使得网络设备能够识别哪些流量属于哪个 VLAN,并据此执行转发决策。具体来说: - **Tag Header**: 在原始以太网帧头部增加了一个额外的 4 字节字段作为 VLAN 标签头。这四个字节包含了以下部分: - **Priority Code Point (PCP)**: 使用 3 比特表示优先级级别,范围从 0 到 7,主要用于 QoS 控制。 - **Canonical Format Indicator (CFI)**: 这是一个单比特位,在传统以太网环境中设置为零。 - **VLAN Identifier (VID)**: 使用 12 比特标识具体的 VLAN ID,理论上可以支持多达 4096 个不同的 VLAN(编号从 0 至 4095),其中某些特殊值保留给内部用途或管理目的。 #### 数据包处理机制 当一个带有 VLAN tag 的数据包进入支持 IEEE 802.1Q 的交换机时,它会依据此标签决定如何路由或者过滤该数据流。如果目标端口不属于同一 VLAN,则不会传输至其他无关联的物理接口上;反之亦然——只有相同 VLAN 成员之间才允许互相通信除非经过路由器跨网段访问[^1]。 此外,为了简化管理和配置过程并增强互操作性,还引入了一些辅助性的子协议和服务组件比如 GARP(通用属性注册协议)。GARP 可帮助分发有关 VLAN 成员资格的信息到各个连接节点以便动态调整其行为模式而无需频繁手动干预[^3]。 以下是创建带 VLAN TAG 的 Python 示例代码片段展示如何模拟构建这样的 Ethernet Frame: ```python from scapy.all import Ether, Dot1Q, IP, sendp def create_vlan_packet(src_mac="00:aa:bb:cc:dd:ee", dst_mac="ff:ff:ff:ff:ff:ff", vlan_id=100, src_ip="192.168.1.1", dst_ip="192.168.1.2"): ether = Ether(src=src_mac, dst=dst_mac) dot1q = Dot1Q(vlan=vlan_id) ip_layer = IP(src=src_ip, dst=dst_ip) packet = ether / dot1q / ip_layer return packet packet = create_vlan_packet() sendp(packet, iface="eth0") # Replace 'eth0' with your network interface name. ``` 上述脚本利用 Scapy 库生成包含指定源地址、目的地址及所属 VLAN 编号的数据报文并通过选定的网卡发送出去测试实际效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值