在图像处理中,通过当前位置的相邻像素计算新的像素值是很常见的操作,当邻域包含图像的前几行货下几行是,你就需要同时扫描图像的若干行。
本代码是对图像进行锐化,它基于拉普拉斯算子,众所周知,将一副图像减去它经过拉普拉斯滤波之后的图像,这幅图像的边缘部分将得到放大,即为细节部分更加锐利,这个锐化算子的计算方式为:
sharpene_pixel = 5*current - left - right - up - down;
left,right, up, down分别为当前像素紧挨着的,左右上下。
代码如下:
#include<opencv2/opencv.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/core/mat.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/core/mat.hpp>
#include<cv.h>
using namespace cv;
void sharpen(const Mat &image, Mat &result)
{
result.create(image.size(), image.type());
for(int j=1; j<image.rows-1; j++)
{
const uchar * previous = image.ptr<const uchar>(j-1);
const uchar * current = image.ptr<const uchar>(j);
const uchar * next = image.ptr<const uchar>(j+1);
uchar * output = result.ptr<uchar>(j);
for(int i=1*image.channels(); i<(image.cols-1)* image.channels(); i++)
{
*output++ = saturate_cast<uchar>(5*current[i]-current[i-(1*image.channels())] - current[i+(1*image.channels())] - previous[i] - next[i]); //锐化算子计算公式
}
}
{
result.create(image.size(), image.type());
for(int j=1; j<image.rows-1; j++)
{
const uchar * previous = image.ptr<const uchar>(j-1);
const uchar * current = image.ptr<const uchar>(j);
const uchar * next = image.ptr<const uchar>(j+1);
uchar * output = result.ptr<uchar>(j);
for(int i=1*image.channels(); i<(image.cols-1)* image.channels(); i++)
{
*output++ = saturate_cast<uchar>(5*current[i]-current[i-(1*image.channels())] - current[i+(1*image.channels())] - previous[i] - next[i]); //锐化算子计算公式
}
}
if(image.channels() == 1) //当图像为单通道图像时,即灰度图像,将未处理的像素设置为0
{
result.row(0).setTo(Scalar(0));
result.row(result.rows-1).setTo(Scalar(0));
result.col(0).setTo(Scalar(0));
result.col(result.cols-1).setTo(Scalar(0));
}else if(image.channels() == 3) //当图像为rgb图像时
{
result.row(0).setTo(Scalar(0, 0, 0));
result.row(result.rows-1).setTo(Scalar(0, 0, 0));
result.col(0).setTo(Scalar(0, 0, 0));
result.col(result.cols-1).setTo(Scalar(0, 0, 0));
}
}
int main()
{
{
Mat image = imread("lena.png");
Mat result;
sharpen(image, result);
namedWindow("image");
namedWindow("result");
imshow("image", image);
imshow("result", result);
waitKey(0);
return 0;
}
Mat result;
sharpen(image, result);
namedWindow("image");
namedWindow("result");
imshow("image", image);
imshow("result", result);
waitKey(0);
return 0;
}