Bomb HDU - 3555
Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence “49”, the power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.
The input terminates by end of file marker.
Output
For each test case, output an integer indicating the final points of the power.
Sample Input
3
1
50
500
Sample Output
0
1
15
Hint
From 1 to 500, the numbers that include the sub-sequence “49” are “49”,”149”,”249”,”349”,”449”,”490”,”491”,”492”,”493”,”494”,”495”,”496”,”497”,”498”,”499”,
so the answer is 15.
题意:
求0 到n的数中有多少个数字是含有‘49’的!
PS:
数位DP
//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i但是不包含49的方案数
//dp[i][1]:长度为i且不含49但是以9开头的数字的方案数
//dp[i][2]:长度为i且包含49的方案数
(转)状态转移如下
dp[i][0] = dp[i-1][0] * 10 - dp[i-1][1]; // not include 49 如果不含49且,在前面可以填上0-9 但是要减去dp[i-1][1] 因为4会和9构成49
dp[i][1] = dp[i-1][0]; // not include 49 but starts with 9 这个直接在不含49的数上填个9就行了
dp[i][2] = dp[i-1][2] * 10 + dp[i-1][1]; // include 49 已经含有49的数可以填0-9,或者9开头的填4
接着就是从高位开始统计
在统计到某一位的时候,加上 dp[i-1][2] * digit[i] 是显然对的,因为这一位可以填 0 - (digit[i]-1)
若这一位之前挨着49,那么加上 dp[i-1][0] * digit[i] 也是显然对的。
若这一位之前没有挨着49,但是digit[i]比4大,那么当这一位填4的时候,就得加上dp[i-1][1]
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<string>
#define LL long long
using namespace std;
LL dp[27][3];
int c[27];
//dp[i][j]:长度为i的数的第j种状态
//dp[i][0]:长度为i但是不包含49的方案数
//dp[i][1]:长度为i且不含49但是以9开头的数字的方案数
//dp[i][2]:长度为i且包含49的方案数
void init()
{
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=1;i<=20;i++)
{
dp[i][0]=dp[i-1][0]*10-dp[i-1][1];
dp[i][1]=dp[i-1][0]*1;
dp[i][2]=dp[i-1][2]*10+dp[i-1][1];
}
}
int cal(LL n)
{
int k=0;
memset(c,0,sizeof(c));
while(n)
{
c[++k]=n%10;
n/=10;
}
c[k+1]=0;
return k;
}
void solve(int len,LL n)
{
int flag=0;//标记是否出现过49
LL ans=0;
for(int i=len;i>=1;i--)
{
ans+=c[i]*dp[i-1][2];
if(flag)
{
ans+=c[i]*dp[i-1][0];
}
else if(c[i]>4)
{
//这一位前面没有挨着49,但c[i]比4大,那么当这一位填4的时候,要加上dp[i-1][1]
ans+=dp[i-1][1];
}
if(c[i+1]==4&&c[i]==9)
{
flag=1;
}
}
if(flag)//一直处理到第1位,此时如果前面出现过49,就加一(因为是没有考虑其本身的)。
ans++;
cout<<ans<<endl;
}
int main()
{
int t;
LL n;
init();
cin>>t;
while(t--)
{
cin>>n;
int len=cal(n);
solve(len,n);
}
return 0;
}