[MSDN_vs2008] dynamic_cast Operator

本文详细介绍了 C++ 中 dynamic_cast 运算符的使用方法与注意事项,包括如何进行安全的类型转换,解释了不同场景下 dynamic_cast 的行为,并通过多个示例代码帮助理解。
Converts the operand expression to an object of type type-id.

dynamic_cast < type-id > ( expression )
Remarks

The type-id must be a pointer or a reference to a previously defined class type or a "pointer to void". The type of expression must be a pointer if type-id is a pointer, or an l-value if type-id is a reference.

For more information about dynamic_cast, see Breaking Changes in dynamic_cast.

See static_cast for an explanation of the difference between static and dynamic casting conversions, and when it is appropriate to use each.

In Visual C++ 2005, there are two breaking changes in the behavior of dynamic_cast in managed code:

  • dynamic_cast to a pointer to the underlying type of a boxed enum will fail at runtime, returning 0 instead of the converted pointer.

  • dynamic_cast will no longer throw an exception when type-id is an interior pointer to a value type, with the cast failing at runtime. The cast will now return the 0 pointer value instead of throwing.

If type-id is a pointer to an unambiguous accessible direct or indirect base class of expression, a pointer to the unique subobject of typetype-id is the result. For example:

// dynamic_cast_1.cpp
// compile with: /c
class B { };
class C : public B { };
class D : public C { };

void f(D* pd) {
   C* pc = dynamic_cast<C*>(pd);   // ok: C is a direct base class
                                   // pc points to C subobject of pd 
   B* pb = dynamic_cast<B*>(pd);   // ok: B is an indirect base class
                                   // pb points to B subobject of pd
}

This type of conversion is called an "upcast" because it moves a pointer up a class hierarchy, from a derived class to a class it is derived from. An upcast is an implicit conversion.

If type-id is void*, a run-time check is made to determine the actual type of expression. The result is a pointer to the complete object pointed to by expression. For example:

// dynamic_cast_2.cpp
// compile with: /c /GR
class A {virtual void f();};
class B {virtual void f();};

void f() {
   A* pa = new A;
   B* pb = new B;
   void* pv = dynamic_cast<void*>(pa);
   // pv now points to an object of type A

   pv = dynamic_cast<void*>(pb);
   // pv now points to an object of type B
}

If type-id is not void*, a run-time check is made to see if the object pointed to by expression can be converted to the type pointed to bytype-id.

If the type of expression is a base class of the type of type-id, a run-time check is made to see if expression actually points to a complete object of the type of type-id. If this is true, the result is a pointer to a complete object of the type of type-id. For example:

// dynamic_cast_3.cpp
// compile with: /c /GR
class B {virtual void f();};
class D : public B {virtual void f();};

void f() {
   B* pb = new D;   // unclear but ok
   B* pb2 = new B;

   D* pd = dynamic_cast<D*>(pb);   // ok: pb actually points to a D
   D* pd2 = dynamic_cast<D*>(pb2);   // pb2 points to a B not a D
}

This type of conversion is called a "downcast" because it moves a pointer down a class hierarchy, from a given class to a class derived from it.

In cases of multiple inheritance, possibilities for ambiguity are introduced. Consider the class hierarchy shown in the following figure.

For CLR types, dynamic_cast results in either a no-op if the conversion can be performed implicitly, or an MSIL isinst instruction, which performs a dynamic check and returns nullptr if the conversion fails.

The following sample uses dynamic_cast to determine if a class is an instance of particular type:

// dynamic_cast_clr.cpp
// compile with: /clr
using namespace System;

void PrintObjectType( Object^o ) {
   if( dynamic_cast<String^>(o) )
      Console::WriteLine("Object is a String");
   else if( dynamic_cast<int^>(o) )
      Console::WriteLine("Object is an int");
}

int main() {
   Object^o1 = "hello";
   Object^o2 = 10;

   PrintObjectType(o1);
   PrintObjectType(o2);
}
Class Hierarchy Showing Multiple Inheritance

Class Hierarchy showing Multiple Inheritance

A pointer to an object of type D can be safely cast to B or C. However, if D is cast to point to an A object, which instance of A would result? This would result in an ambiguous casting error. To get around this problem, you can perform two unambiguous casts. For example:


// dynamic_cast_4.cpp
// compile with: /c /GR
class A {virtual void f();};
class B {virtual void f();};
class D : public B {virtual void f();};

void f() {
   D* pd = new D;
   B* pb = dynamic_cast<B*>(pd);   // first cast to B
   A* pa2 = dynamic_cast<A*>(pb);   // ok: unambiguous
}

Further ambiguities can be introduced when you use virtual base classes. Consider the class hierarchy shown in the following figure.

Class Hierarchy Showing Virtual Base Classes

ClassHierarchyVirtualBaseClasses graphic

In this hierarchy, A is a virtual base class. See Virtual Base Classes for the definition of a virtual base class. Given an instance of class E and a pointer to the A subobject, a dynamic_cast to a pointer to B will fail due to ambiguity. You must first cast back to the complete Eobject, then work your way back up the hierarchy, in an unambiguous manner, to reach the correct B object.

Consider the class hierarchy shown in the following figure.

Class Hierarchy Showing Duplicate Base Classes

Class Hierarchy showing Duplicate Base Classes

Given an object of type E and a pointer to the D subobject, to navigate from the D subobject to the left-most A subobject, three conversions can be made. You can perform a dynamic_cast conversion from the D pointer to an E pointer, then a conversion (eitherdynamic_cast or an implicit conversion) from E to B, and finally an implicit conversion from B to A. For example:

// dynamic_cast_5.cpp
// compile with: /c /GR
class A {virtual void f();};
class B : public A {virtual void f();};
class C : public A { };
class D {virtual void f();};
class E : public B, public C, public D {virtual void f();};

void f(D* pd) {
   E* pe = dynamic_cast<E*>(pd);
   B* pb = pe;   // upcast, implicit conversion
   A* pa = pb;   // upcast, implicit conversion
}

The dynamic_cast operator can also be used to perform a "cross cast." Using the same class hierarchy, it is possible to cast a pointer, for example, from the B subobject to the D subobject, as long as the complete object is of type E.

Considering cross casts, it is actually possible to do the conversion from a pointer to D to a pointer to the left-most A subobject in just two steps. You can perform a cross cast from D to B, then an implicit conversion from B to A. For example:


// dynamic_cast_6.cpp
// compile with: /c /GR
class A {virtual void f();};
class B : public A {virtual void f();};
class C : public A { };
class D {virtual void f();};
class E : public B, public C, public D {virtual void f();};

void f(D* pd) {
   B* pb = dynamic_cast<B*>(pd);   // cross cast
   A* pa = pb;   // upcast, implicit conversion
}

A null pointer value is converted to the null pointer value of the destination type by dynamic_cast.

When you use dynamic_cast < type-id > ( expression ), if expression cannot be safely converted to type type-id, the run-time check causes the cast to fail. For example:

// dynamic_cast_7.cpp
// compile with: /c /GR
class A {virtual void f();};
class B {virtual void f();};

void f() {
   A* pa = new A;
   B* pb = dynamic_cast<B*>(pa);   // fails at runtime, not safe;
   // B not derived from A
}

The value of a failed cast to pointer type is the null pointer. A failed cast to reference type throws a bad_cast Exception.   If expressiondoes not point to or reference a valid object, a __non_rtti_object exception is thrown.

See typeid for an explanation of the __non_rtti_object exception.

Example

The following sample creates the base class (struct A) pointer, to an object (struct C). This, plus the fact there are virtual functions, enables runtime polymorphism.

The sample also calls a non-virtual function in the hierarchy.

// dynamic_cast_8.cpp
// compile with: /GR /EHsc
#include <stdio.h>
#include <iostream>

struct A {
    virtual void test() {
        printf_s("in A\n");
   }
};

struct B : A {
    virtual void test() {
        printf_s("in B\n");
    }

    void test2() {
        printf_s("test2 in B\n");
    }
};

struct C : B {
    virtual void test() {
        printf_s("in C\n");
    }

    void test2() {
        printf_s("test2 in C\n");
    }
};

void Globaltest(A& a) {
    try {
        C &c = dynamic_cast<C&>(a);
        printf_s("in GlobalTest\n");
    }
    catch(std::bad_cast) {
        printf_s("Can't cast to C\n");
    }
}

int main() {
    A *pa = new C;
    A *pa2 = new B;

    pa->test();

    B * pb = dynamic_cast<B *>(pa);
    if (pb)
        pb->test2();

    C * pc = dynamic_cast<C *>(pa2);
    if (pc)
        pc->test2();

    C ConStack;
    Globaltest(ConStack);

   // will fail because B knows nothing about C
    B BonStack;
    Globaltest(BonStack);
}
/*******************************
in C
test2 in B
in GlobalTest
Can't cast to C
*******************************/


 
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)内容概要:本文提出了一种基于融合鱼鹰和柯西变异的麻雀优化算法(OCSSA)优化变分模态分解(VMD)参数,并结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)的轴承故障诊断模型。该方法利用西储大学公开的轴承数据集进行验证,通过OCSSA算法优化VMD的分解层数K和惩罚因子α,有效提升信号分解精度,抑制模态混叠;随后利用CNN提取故障特征的空间信息,BiLSTM捕捉时间序列的动态特征,最终实现高精度的轴承故障分类。整个诊断流程充分结合了信号预处理、智能优化与深度学习的优势,显著提升了复杂工况下轴承故障诊断的准确性与鲁棒性。; 适合人群:具备一定信号处理、机器学习及MATLAB编程基础的研究生、科研人员及从事工业设备故障诊断的工程技术人员。; 使用场景及目标:①应用于旋转机械设备的智能运维与故障预警系统;②为轴承等关键部件的早期故障识别提供高精度诊断方案;③推动智能优化算法与深度学习在工业信号处理领域的融合研究。; 阅读建议:建议读者结合MATLAB代码实现,深入理解OCSSA优化机制、VMD参数选择策略以及CNN-BiLSTM网络结构的设计逻辑,通过复现实验掌握完整诊断流程,并可进一步尝试迁移至其他设备的故障诊断任务中进行验证与优化。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值