为什么创建类的时候要用new?

这篇文章主要介绍了C++基础入门教程(六):为什么创建类的时候要用new?本文讲解了使用new创建动态结构体、为什么要有new、自动存储(自动变量、局部变量)、动态存储、vector和array等内容,需要的朋友可以参考下

今天是关于指针初步介绍的最后一篇,也是能让初学者明白为什么类是new出来的、为什么某些变量会莫名被释放,以及为什么木头会这么聪明。

1.使用new创建动态结构体

还记得我们的结构体吧?之前说过,结构体也是可以通过new来创建存储空间的,返回的是一个指向结构体类型空间的指针。

如下代码:

复制代码代码如下:

struct Man
    {
        int age;
        int IQ;
    };
    Man* pMan = new Man;
    pMan->IQ = 251;
    cout << pMan->IQ << "\n";
    cout << (*pMan).IQ << "\n";

定义一个结构体Man,然后使用new Man来动态创建内存空间,返回一个指针,这个指针指向一块用于存放Man类型的内存空间。
然后调用pMan->IQ给属性赋值,这里的“->”符号我们应该都很属性吧。
 
稍微说明一下,如果不是用new来创建的对象,那么,应该使用.符号来使用属性。
如果使用new创建的对象,则使用->符号来使用属性。
 
但实际上,最终还是.符号,->符号只是语法糖。
因为pMan是指针,所以*pMan是指针所指内存空间上的对象值,于是,调用属性是这样的:(*pMan).IQ
但每次都这么调用,很麻烦,于是就有了pMan->IQ这种方便的形式。
 
所以,大家不要再搞混了.和->了~
一般情况,可以理解为,指针都使用->符号。
 
(这段文字感觉解释地很糟糕,因为我旁边有人在一直说话,我思绪不太安静…)

2.为什么要有new?

为什么要有new?为什么要动态创建对象?为什么有时候不用new,有时候又用new,比如:

复制代码代码如下:

// Cocos2d-x3.x的Value类,大家都很熟悉了
Value v = Value(100);
// Cocos2d-x的Sprite类,也很属性了
Sprite* sp = new Sprite();


为什么有些地方不用new,有些地方又要new呢?
 
这就涉及到自动存储和动态存储了。

3.自动存储(自动变量、局部变量)

自动存储,也叫做自动变量,比如int num = 10; 这个num就属于自动变量。
所谓自动,代表它会自动申请内存,也会自动释放内存,自动变量是保存在栈里的(后进先出)。
 
如果大家觉得很难理解,那么,换一个名称——局部变量。
这个好理解了吧?局部变量在离开函数,或者离开它所属的代码块之后,就会被释放。
 
而Value v = Value(100); 、int num = 10; 这些都是局部变量,一旦离开函数或者离开它的作用域,就会被释放。
比如把int num; 作为成员变量,那么,在这个类被释放的时候,num变量也会被释放。
这就是为什么我们在创建了这么多int、float等基本类型的变量之后,不需要去释放它们。
因为它们是自动被释放的。

4.动态存储

自动变量有很大的好处,那就是不需要我们去管内存方面的事情,但是,有时候我们不希望有这样的自动释放内存。

我们希望自己去控制什么时候释放对象,这时候就要用到new了。

我们都知道,new了之后,如果不调用相应delete的话,申请到的内存空间是永远都不会被释放的。
这就是动态存储了,我们自己来申请内存,自己来释放内存。

当然,内存泄露的罪魁祸首之一也正是new~!

因为正常人都会有疏忽的时候,并且当程序足够庞大、逻辑足够复杂的时候,有些地方调用了new,却疏忽了delete是再正常不过了。
 
当然,new的作用也许不仅于此,书上目前还没深入介绍,我也不多说,免得说错,毕竟C++还是需要严谨一些的~

我不敢乱吹水~

5.vector和array

相信不少初学者会被Cocos2d-x3.x的Vector给弄迷糊了。

Vector是Cocos2d-x封装的一个类,而vector是C++里提供的一个类。

一个首字母大写,一个首字母小写,不要再弄错喇~
 
C++的vector是一种动态数组的实现,我们都知道,数组在声明的时候就要确定数组的大小,除非是使用new的方式。

vector就是使用new来申请内存的,但它已经封装好了,不需要我们去处理内存释放的问题。
 
vector的使用方式很简单:

复制代码代码如下:

// 可以在声明的时候就进行初始化
    vector<int> v = {1, 2};
    // 可以动态地添加新的元素进去
    v.push_back(5);
    // 使用at来获取某个元素
    cout << v.at(2);
    // 也可以像数组一样获取某个元素
    cout << v[2];

注意,使用vector要引入头文件:#include <vector>
既然是动态数组,那就肯定可以动态添加和删除元素。
获取元素的方式有两种,一种是使用at,这种方式比较安全,会检查下标是否合法。
也可以使用普通数组的方式来获取元素,这种方式比较危险,不会检查下标是否合法。
 
好了,vector就不多说了~
 
另外还有一个array类,这是C++11新增的。
vector是动态数组,效率自然要逊色一些。
而普通数组使用起来可能不太方便和安全。
于是,array诞生了,array也是固定长度的数组,但是使用起来可能更方便和安全:

复制代码代码如下:

array<int, 2> arr = { 1, 2 };
    cout << arr.at(1);

声明的方式比较特别,需要制定数组类型和大小,因为是固定长度的数组,大小也是不能变的。
获取元素的方式依旧有两种,使用at或者普通数组的方式,两种方式的区别和vector一样。

6.结束

好了,书籍第四章的内容到这里就结束了。
这一章的内存比较杂乱,算是什么知识都介绍了一些吧,但都不太深入。
最近事很多,希望能继续坚持。

### 深度优先搜索 (DFS) 的节点访问顺序 深度优先搜索(DFS)是一种用于遍历或搜索树或图的算法,其核心在于沿着某个路径尽可能深入地探索节点,直到无法再进一步扩展时才回退到之前的节点并尝试其他方向[^1]。 #### 访问顺序的核心机制 在 DFS 中,节点的访问顺序通常遵循 **先入后出** 的原则,这意味着可以利用栈的数据结构来实现这一过程。无论是显式的栈还是隐式的递归调用栈,DFS 都会从初始节点出发,依次访问与其相邻且未被访问过的节点,并将其标记为已访问状态以防止重复处理[^3]。 具体来说,在执行过程中,如果当前节点存在尚未访问的邻接点,则选择其中一个作为新的起点继续向下探;反之则返回至上一层级重新寻找可拓展的方向直至完成全部顶点覆盖[^2]。 以下是基于递归方式实现的一个典型 Python 实现: ```python def dfs(graph, node, visited): if node not in visited: print(node, end=" ") # 输出访问次序 visited.add(node) for neighbor in graph[node]: if neighbor not in visited: dfs(graph, neighbor, visited) # 示例输入 graph = { 'A': ['B', 'C'], 'B': ['D', 'E'], 'C': ['F'], 'D': [], 'E': ['F'], 'F': [] } visited = set() dfs(graph, 'A', visited) ``` 此代码片段展示了如何通过递归来模拟 DFS 行为以及记录各阶段所到达的位置序列[^1]。 需要注意的是,由于每次仅挑选一条可行路线前进而忽略其余可能性,因此最终得到的结果可能会因选取不同起始位置或者连接关系呈现多样性特征[^3]。 综上所述,深度优先搜索中的节点访问顺序取决于实际构建方法及其内部逻辑控制——即是朝着未曾涉足之处迈进,一旦穷尽局部选项便退回上级层次另觅出路,如此循环往复直至全局范围内的每一个角落均已被触及为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值