Given a string S and a string T, count the number of distinct subsequences of S which equals T.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not).
Example 1:
Input: S = "rabbbit", T = "rabbit"
Output: 3
思路:
dp[i][j]代表s[0...i]与t[0...j]匹配数
dp[i][j]=dp[i-1][j] //if s[i]!=t[j]
dp[i][j]=dp[i-1][j]+dp[i-1][j-1] //if s[i]==t[j]
AC code
二维写法:
class Solution
{
public:
int numDistinct(string s, string t)
{
if (s.empty() || t.empty()|| s.length() < t.length())
return 0;
int ls = s.length(), lt = t.length();
vector<vector<long long> > dp(ls + 1, vector<long long>(lt + 1, 0));
dp[0][0] = 1;
for (int i = 0; i < ls; ++i)
dp[i][0] = 1;
for (int i = 1; i <= ls; ++i)
for (int j = 1; j <= lt; ++j)
{
dp[i][j] = dp[i - 1][j];
if (s[i-1] == t[j-1])
dp[i][j] += dp[i - 1][j - 1];
}
return dp[ls][lt];
}
};
一维优化:
class Solution
{
public:
int numDistinct(string s, string t)
{
int m = s.length(), n = t.length();
vector<long> dp(n + 1, 0);
dp[0] = 1;
for (int i = 1; i <= m; i++)
{
for (int j = n; j >= 1; j--)
{
if (s[i - 1] == t[j - 1])
{
dp[j] += dp[j - 1];
}
}
}
return dp[n];
}
};

本文介绍了一种使用动态规划解决字符串匹配计数问题的方法。通过两个示例代码详细展示了如何在一维和二维数组中计算源字符串S中有多少不同的子序列等于目标字符串T。一维优化方案减少了空间复杂度。
4万+

被折叠的 条评论
为什么被折叠?



