轴突纤维取向去噪与三维重建方法研究
轴突纤维取向去噪
NNLS与NNBP方法对比
在处理人类大脑弥散加权磁共振成像(DW - MRI)数据时,我们采用了两种方法来拟合扩散基函数(DBF)模型,分别是非负最小二乘法(NNLS)和非负基追踪法(NNBP)。对936个体素的统计分析结果如下表所示:
| 特征 | 最小值 | 最大值 | 平均值 | 标准差 |
| — | — | — | — | — |
| NNLS拟合误差 | 0.929 | 15.820 | 1.616 | 1.058 |
| NNBP拟合误差 | 0.929 | 15.816 | 1.644 | 1.059 |
| NNLS系数数量 | 1 | 9 | 3.973 | 1.281 |
| NNBP系数数量 | 1 | 8 | 3.525 | 1.320 |
| NNLS时间(秒) | 0.002 | 0.190 | 0.068 | 0.037 |
| NNBP时间(秒) | 0.145 | 1.037 | 0.372 | 0.074 |
从表中数据可以看出,对于相同的数据,大多数体素下NNBP涉及三个系数,而NNLS涉及四个系数。综合分析可得:
- NNBP产生的解更稀疏,不过其拟合误差相较于NNLS略大,但差异不显著。
- NNBP的处理速度比NNLS慢,约为NNLS的6倍。
考虑到稀疏性比处理时间更为重要,且NNBP的拟合精度与NNLS相比并无显著下降,因此在当前工作中更倾向于使用NNBP方法。
具体实现细节
- DW