双重随机过程 HMM 语音识别

大多数大词汇量、连续语音的非特定人语音识别系统都是基于HMM模型的。

HMM是对语音信号的时间序列结构建立统计模型,将之看作一个数学上的双重随机过程:

一个是用具有有限状态数的Markov 链来模拟语音信号统计特性变化的隐含的随机过程,

另一个是与Markov 链的每一个状态相关联的观测序列的随机过程。

前者通过后者表现出来,但前者的具体参数是不可测的。

人的言语过程实际上就是一个双重随机过程,

语音信号本身是一个可观测的时变序列,

是由大脑根据语法知识和言语需要(不可观测的状态) 发出的音素的参数流。

可见HMM合理地模仿了这一过程,很好地描述了语音信号的整体非平稳性和局部平稳性,是较为理想的一种语音模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值