2021-10-11

关于Redis处理高并发

Redis的高并发和快速原因

1.Redis是基于内存的,内存的读写速度非常快;

2.Redis是单线程的,省去了很多上下文切换线程的时间;

3.Redis使用多路复用技术,可以处理并发的连接。非阻塞IO 内部实现采用epoll,采用了epoll+自己实现的简单的事件框架。epoll中的读、写、关闭、连接都转化成了事件,然后利用epoll的多路复用特性,绝不在io上浪费一点时间。

下面重点介绍单线程设计和IO多路复用核心设计快的原因 

为什么Redis是单线程的

1.官方答案

因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了。

2.性能指标

关于Redis的性能,官方网站也有,普通笔记本轻松处理每秒几十万的请求。

3.详细原因

1)不需要各种锁的性能消耗

Redis的数据结构并不全是简单的Key-Value,还有list,hash等复杂的结构,这些结构有可能会进行很细粒度的操作,比如在很长的列表后面添加一个元素,在hash当中添加或者删除

一个对象。这些操作可能就需要加非常多的锁,导致的结果是同步开销大大增加。

总之,在单线程的情况下,就不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗。

2)单线程多进程集群方案

单线程的威力实际上非常强大,每核心效率也非常高,多线程自然是可以比单线程有更高的性能上限,但是在今天的计算环境中,即使是单机多线程的上限也往往不能满足需要了,需要进一步摸索的是多服务器集群化的方案,这些方案中多线程的技术照样是用不上的。

所以单线程、多进程的集群不失为一个时髦的解决方案。

3)CPU消耗

采用单线程,避免了不必要的上下文切换和竞争条件,也不存在多进程或者多线程导致的切换而消耗 CPU。

但是如果CPU成为Redis瓶颈,或者不想让服务器其他CUP核闲置,那怎么办?

可以考虑多起几个Redis进程,Redis是key-value数据库,不是关系数据库,数据之间没有约束。只要客户端分清哪些key放在哪个Redis进程上就可以了。

IO多路复用技术

Redis 采用网络IO多路复用技术来保证在多连接的时候, 系统的高吞吐量。

多路-指的是多个socket连接,复用-指的是复用一个线程。多路复用主要有三种技术:select,poll,epoll。epoll是最新的也是目前最好的多路复用技术。

这里“多路”指的是多个网络连接,“复用”指的是复用同一个线程。采用多路 I/O 复用技术可以让单个线程高效的处理多个连接请求(尽量减少网络IO的时间消耗),且Redis在内存中操作数据的速度非常快(内存内的操作不会成为这里的性能瓶颈),主要以上两点造就了Redis具有很高的吞吐量。

Redis高并发快总结

1. Redis是纯内存数据库,一般都是简单的存取操作,线程占用的时间很多,时间的花费主要集中在IO上,所以读取速度快。

2. 再说一下IO,Redis使用的是非阻塞IO,IO多路复用,使用了单线程来轮询描述符,将数据库的开、关、读、写都转换成了事件,减少了线程切换时上下文的切换和竞争。

3. Redis采用了单线程的模型,保证了每个操作的原子性,也减少了线程的上下文切换和竞争。

4. 另外,数据结构也帮了不少忙,Redis全程使用hash结构,读取速度快,还有一些特殊的数据结构,对数据存储进行了优化,如压缩表,对短数据进行压缩存储,再如,跳表,使用有序的数据结构加快读取的速度。

5. 还有一点,Redis采用自己实现的事件分离器,效率比较高,内部采用非阻塞的执行方式,吞吐能力比较大。

<think>好的,我现在要帮用户解决在Pandas中筛选特定日期范围内数据的问题。用户的需求是在列名为'time'的数据中筛选2021-10-112021-11-11之间的数据,需要Python代码示例。首先,我得回想一下Pandas处理日期数据的常用方法。 首先,用户提到列名是'time',所以需要确保该列的数据类是datetime。如果原始数据中的'time'列是字符串格式,就需要先转换。根据引用[2]里的内容,可以用pd.to_datetime()函数来转换。比如:df['time'] = pd.to_datetime(df['time'])。这一步很重要,否则后续的日期比较可能不会按预期工作。 接下来,筛选日期范围。用户需要的是2021-10-112021-11-11之间的数据,包括这两个日期吗?通常使用布尔索引,结合两个条件:df['time'] >= '2021-10-11' 和 df['time'] <= '2021-11-11'。用逻辑运算符&连接这两个条件,同时要注意括号的使用,避免运算优先级的问题。所以代码应该是df[(df['time'] >= '2021-10-11') & (df['time'] <= '2021-11-11')]。 另外,如果数据量大的话,可能要考虑效率问题。比如,先确保'time'列已经转换为datetime类,并且设置为索引,这样可能提高查询速度。不过用户的问题中没有提到数据量,所以基本的筛选方法应该足够。 再想一下是否有其他方法。比如使用between方法,可能更简洁。df[df['time'].between('2021-10-11', '2021-11-11')]。这也是一种可行的方法,可能更容易理解。 还需要注意日期格式是否正确。用户给出的日期是'YYYY-MM-DD'格式,这在Python中是可以被Pandas正确解析的。但如果有不同的格式,可能需要指定format参数。不过用户的问题中日期格式符合标准,所以不需要额外处理。 另外,是否需要考虑时区?如果数据中的时间有时区信息,可能会影响比较结果。但用户的问题中没有提到时区,所以假设数据是本地时间或没有时区信息。 总结一下步骤:首先转换'time'列为datetime类,然后用布尔索引筛选日期范围。给出这两种方法,并附上示例代码。同时,提醒用户如果数据中存在时间部分的情况,比如时间戳包含具体时间,可能需要调整结束日期为'2021-11-11 23:59:59',或者使用包含时间的方法。 还需要参考用户提供的引用内容。引用[2]提到了转换字符串到时间格式的方法,引用[3]有关于数据排序的内容,但当前问题不需要排序,所以可能不需要涉及。但用户的问题可能是在处理时间数据后进行筛选,所以确保引用了正确的部分。 最后,生成相关问题的时候,要考虑用户可能的后续问题,比如如何处理不同日期格式、如何筛选时间范围包含时间部分,或者如何优化性能。这样用户如果有进一步的问题,可以自行参考这些问题。</think>以下是筛选特定日期范围数据的Python代码示例及详细说明: ### 基础实现步骤 1. **转换时间格式** ```python # 将列转换为datetime类(若原始数据为字符串) df['time'] = pd.to_datetime(df['time']) ``` 2. **筛选日期范围** ```python # 筛选2021-10-112021-11-11的数据(包含两端) filtered_df = df[(df['time'] >= '2021-10-11') & (df['time'] <= '2021-11-11')] ``` ### 完整示例代码 ```python import pandas as pd # 示例数据生成 data = {'time': ['2021-10-10', '2021-10-15', '2021-11-05', '2021-11-12'], 'value': [1, 2, 3, 4]} df = pd.DataFrame(data) # 转换时间列 df['time'] = pd.to_datetime(df['time']) # 引用字符串转时间戳方法[^2] # 执行筛选 result = df[df['time'].between('2021-10-11', '2021-11-11')] # 或使用布尔表达式 print(result) ``` ### 特别说明 1. 若时间列包含时分秒,可使用: ```python start_date = pd.Timestamp('2021-10-11 00:00:00') end_date = pd.Timestamp('2021-11-11 23:59:59') ``` 2. 若日期列是索引: ```python df.loc['2021-10-11':'2021-11-11'] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值