Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9], insert and merge [2,5] in as
[1,5],[6,9].
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in as
[1,2],[3,10],[12,16].
This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10].
/**
* Definition for an interval.
* struct Interval {
* int start;
* int end;
* Interval() : start(0), end(0) {}
* Interval(int s, int e) : start(s), end(e) {}
* };
*/
class Solution {
public:
/*algorithm
similar as merge interval
*/
vector<Interval> insert(vector<Interval>& intervals, Interval newInterval) {
vector<Interval>ret;
intervals.push_back(Interval(INT_MAX,INT_MAX));//as end mark
//first insert
int i = 0;
for(;i < intervals.size();++i){
if(newInterval.start < intervals[i].start ||
(newInterval.start == intervals[i].start &&
newInterval.end < intervals[i].end)){
break;
}
}
intervals.insert(intervals.begin()+i,newInterval);//insert element
//second merge
Interval cur=intervals[0];
for(int i = 1;i < intervals.size();i++){
if(cur.end >= intervals[i].start){//overlap
cur.start = min(cur.start,intervals[i].start);
cur.end = max(cur.end,intervals[i].end);
}else{
ret.push_back(cur);
cur = intervals[i];
}
}
return ret;
}
};

本文介绍了一种在已排序的非重叠区间中插入新区间并进行必要合并的算法。通过两个实例展示了如何将新区间[2,5]和[4,9]分别插入到[1,3],[6,9]及[1,2],[3,5],[6,7],[8,10],[12,16]中,并进行了有效的合并。
195

被折叠的 条评论
为什么被折叠?



