A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
class Solution {
public:
/*algorithm 2-D DP
path[m][n] = path[m-1][n]+path[m][n-1] //top-->down, left-->right
time O(m*n) space O(m*n)
*/
int uniquePaths(int m, int n) {//1x2
vector<vector<int> >dp(m+1,vector<int>(n+1,0));
for(int i = 1;i < m+1;i++){
dp[i][1] = 1;
for(int j = 2;j < n+1;j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m][n];
}
};class Solution {
public:
/*algorithm 1-d DP
path[m][n] = path[m-1][n]+path[m][n-1] //top-->down, left-->right
/path[i] = path[i] + path[i-1]
optimize memory to O(n)
time O(m*n) space O(n)
*/
int uniquePaths(int m, int n) {//1x2
vector<int>dp(n+1,0);
dp[1] = 1;
for(int i = 1;i < m+1;i++){
for(int j = 2;j < n+1;j++)
dp[j] += dp[j-1];
}
return dp[n];
}
};

375

被折叠的 条评论
为什么被折叠?



