PyCharm+Tensorflow CNN调用训练好的模型进行预测 (五)

本文介绍使用TensorFlow和CNN模型对手写数字进行识别的方法。包括两种调用已训练模型进行预测的方式,以及如何预处理输入图像以匹配MNIST数据集格式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过Pycharm+tensorflow CNN 学习(四)可以训练得到模型,并将模型进行保存。本次博文中主要是调用训练好的进行预测。
该模型训练所使用的数据集是MNIST集。在对图片中数字进行识别前,需要对图片进行预处理,即将图片转变为MNIST数据集中图片的格式。预处理程序可以点击此处查看

调用模型进行预测的代码如下:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import cv2
import numpy as np
#import imutils
# from scikit-image import data,segmentation,measure,morphology,color
from PIL import Image

im = Image.open('D:\\deng\\ppp\\888.png')
data = list(im.getdata())
result = [(255-x)*1.0/255.0 for x in data]
print(result)

sess = tf.Session()


def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})            #(10000,10)
    correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))      #比较是否相等,返回bool
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))          #将比较结果转换成tf.float32,并计算平均值
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result


def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


keep_prob = tf.placeholder(tf.float32)
with tf.name_scope('inputs'):
    xs = tf.placeholder(tf.float32, [None, 784], name='x_input')  #28x28
    ys = tf.placeholder(tf.float32, [None, 10], name='y_input')
x_image = tf.reshape(xs, [-1, 28, 28, 1])
#print("n_samples:", x_image.shape)

#conv1 layer
W_conv1 = weight_variable([5, 5, 1, 32])  #patch 5x5 in size=1, out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1)                          # size 14x14x32

#conv2 layer
W_conv2 = weight_variable([5, 5, 32, 64])  #patch 5x5 in size=32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2)                          # size 7x7x64

#func1 layer
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#func2 layer
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)


cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
                                              reduction_indices=[1]))       #loss
tf.summary.scalar('loss', cross_entropy)

with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

init = tf.global_variables_initializer()


#summary writer goes in here
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('D:/deng/logs/train', sess.graph)
test_writer = tf.summary.FileWriter('D:/deng/logs/test', sess.graph)


sess.run(init)
saver = tf.train.Saver()
#与训练过程代码进行对比,主要不同的地方在这里
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver.restore(sess, "D:/deng/model/model.ckpt")#这里使用了之前保存的模型参数

    prediction = tf.argmax(prediction, 1)
    predint = prediction.eval(feed_dict={xs: [result], keep_prob: 1.0}, session=sess)

    print("recognize result: %d" %predint[0])

sess.close()

这个代码实测有效,只不过代码太过冗长了。本人会继续学习,尝试以最短的代码调用训练好的模型进行预测。若有什么建议或者错误之处,还请看到博文的朋友能够在评论区指出。感谢!

参考:
TensorFlow下利用MNIST训练模型识别手写数字

方法2:
相对于方法1,更加强大,并且简洁。感觉太爽了~

import tensorflow as tf
from PIL import Image

im = Image.open('D:\\deng\\ppp\\333.png')
data = list(im.getdata())
result = [(255-x)*1.0/255.0 for x in data]
print(result)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    saver = tf.train.import_meta_graph('D:/deng/model2/model.ckpt.meta')
    saver.restore(sess, "D:/deng/model2/model.ckpt")  # 这里使用了之前保存的模型参数
    pred = tf.get_collection('network-output')[0]
    prediction = tf.argmax(pred, 1)
    graph = tf.get_default_graph()
    xs = graph.get_operation_by_name('x_input').outputs[0]
    keep_prob = graph.get_operation_by_name('keep_prob').outputs[0]
    #keep_prob = graph.get_operation_by_name('y_inout').outputs[0]
    predint = prediction.eval(feed_dict={xs: [result], keep_prob: 1.0}, session=sess)

    print("recognize result: %d" % predint[0])

训练模型的代码如下:

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
sess = tf.Session()


def compute_accuracy(v_xs, v_ys):
    global prediction
    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
    correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_ys, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
    return result


def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')


keep_prob = tf.placeholder(tf.float32, name='keep_prob')
# with tf.name_scope('inputs'):
xs = tf.placeholder(tf.float32, [None, 784], name='x_input')
ys = tf.placeholder(tf.float32, [None, 10], name='y_input')
x_image = tf.reshape(xs, [-1, 28, 28, 1])
#print("n_samples:", x_image.shape)

#conv1 layer
with tf.name_scope('conv1_layer'):
    with tf.name_scope('W_conv1'):
        W_conv1 = weight_variable([5, 5, 1, 32])
        tf.summary.histogram('conv1/wights', W_conv1)
    with tf.name_scope('b_conv1'):
        b_conv1 = bias_variable([32])
        tf.summary.histogram('conv1/biases', b_conv1)
    with tf.name_scope('conv1-wx_plus_b'):
        h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    with tf.name_scope('conv1_pooling'):
        h_pool1 = max_pool_2x2(h_conv1)

#conv2 layer
with tf.name_scope('conv2_layer'):
    with tf.name_scope('W_conv2'):
        W_conv2 = weight_variable([5, 5, 32, 64])
        tf.summary.histogram('conv2/wights', W_conv2)
    with tf.name_scope('b_conv2'):
        b_conv2 = bias_variable([64])
        tf.summary.histogram('conv2/biases', b_conv2)
    with tf.name_scope('conv2-wx_plus_b'):
        h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    with tf.name_scope('conv2_pooling'):
        h_pool2 = max_pool_2x2(h_conv2)

#func1 layer
with tf.name_scope('full-connected1'):
    with tf.name_scope('W_fc1'):
        W_fc1 = weight_variable([7*7*64, 1024])
        tf.summary.histogram('fc1/wights', W_fc1)
    with tf.name_scope('b_fc1'):
        b_fc1 = bias_variable([1024])
        tf.summary.histogram('fc1/biases', b_fc1)
    with tf.name_scope('fc1-wx_plus_b'):
        h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
        h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#func2 layer
with tf.name_scope('full-connected2'):
    with tf.name_scope('W_fc2'):
        W_fc2 = weight_variable([1024, 10])
        tf.summary.histogram('fc2/wights', W_fc2)
    with tf.name_scope('b_fc2'):
        b_fc2 = bias_variable([10])
        tf.summary.histogram('fc2/biases', b_fc2)
    with tf.name_scope('fc2-wx_plus_b'):
        prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
        tf.add_to_collection('network-output', prediction)


cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),
                                              reduction_indices=[1]))
tf.summary.scalar('loss', cross_entropy)

with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

init = tf.global_variables_initializer()


#summary writer goes in here
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('D:/deng/logs/train', sess.graph)
#test_writer = tf.summary.FileWriter('D:/deng/logs/test', sess.graph)


sess.run(init)
saver = tf.train.Saver()

for i in range(2000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
    if i % 50 == 0:
        result = sess.run(merged, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 1})
        train_writer.add_summary(result, i)
        print(compute_accuracy(
            mnist.test.images, mnist.test.labels
        ))

saver = tf.train.Saver()
model_path = "D:/deng/model2/model.ckpt"
saver.save(sess, model_path)
sess.close()

参考:
Tensorflow实现在训练好的模型上进行测试

### 如何在 PyCharm 中加载并运行 CNN 模型进行预测 要在 PyCharm 中加载并运行已训练CNN 模型进行预测,需完成以下几个方面的操作: #### 1. **准备开发环境** 确保安装了必要的依赖库。可以通过 Anaconda 创建虚拟环境,并安装 TensorFlow 和其他所需包。激活虚拟环境后,在终端输入以下命令: ```bash pip install tensorflow matplotlib numpy scikit-image ``` 此部分涉及的内容已在参考资料中有提及[^2]。 #### 2. **导入所需的 Python 库** 编写脚本时,需要先导入必要的模块以支持模型加载和图像处理等功能。以下是常见的导入语句: ```python import tensorflow as tf from tensorflow.keras.models import load_model import numpy as np from skimage.transform import resize ``` 这些工具用于加载模型、预处理图像以及执行预测任务。 #### 3. **加载已经保存的 CNN 模型** 假设之前使用 `model.save()` 方法保存了一个 Keras/TensorFlowCNN 模型文件(通常为 `.h5` 或 `.pb` 文件),可以利用如下代码将其重新加载到内存中: ```python # 加载保存的模型 model_path = 'path_to_your_saved_model.h5' # 替换为你实际存储路径 loaded_model = load_model(model_path) print("Model loaded successfully!") ``` 上述方法适用于基于 MNIST 数据集或其他数据源构建的模型[^1]。 #### 4. **定义图像预处理函数** 为了使新图片能够被正确识别,必须对其进行标准化处理使其匹配原始训练数据的形式。例如对于 MNIST 集合来说,每张图像是灰度模式下的固定大小 (28×28 像素),因此任何待测样本都需要调整至相同规格。 ```python def preprocess_image(image): """将任意尺寸的 RGB 图像转换成适合网络输入的标准形式""" gray_img = image.convert('L') # 转化为单通道灰色图像 resized_img = resize(gray_img, (28, 28)) / 255.0 # 缩放至目标分辨率 & 归一化像素值范围 [0..1] reshaped_input = resized_img.reshape((1, 28, 28, 1)).astype(np.float32) return reshaped_input ``` 注意这里提到的具体数值可能依据具体项目而有所变化;如果采用的是 CIFAR-10,则应改为对应的颜色通道数与空间维度设置。 #### 5. **实施预测逻辑** 最后一步就是调用前面建立起来的一切组件来进行最终推断工作啦!下面展示了一段完整的例子流程: ```python if __name__ == '__main__': from PIL import Image test_image_filepath = './test_digit.png' img_instance = Image.open(test_image_filepath) processed_data = preprocess_image(img_instance) predictions = loaded_model.predict(processed_data)[0] predicted_label_index = int(tf.argmax(predictions).numpy()) confidence_score = float(max(predictions)) labels_map = {i: str(i) for i in range(10)} # 对于手写数字而言标签即为其本身字符表示法 result_message = f"The model predicts this is a '{labels_map[predicted_label_index]}', with probability of {confidence_score:.2f}." print(result_message) ``` 以上过程涵盖了从读取外部图形资源直至得出结论整个闭环链条上的各个环节要点说明。 --- ###
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值