time limit per test : 1 second
memory limit per test : 256 megabytes
You are given nnn integer numbers a1,a2,…,ana_1,a_2,…,a_na1,a2,…,an. Consider graph on nnn nodes, in which nodes i,j(ii, j (ii,j(i≠j)j)j) are connected if and only if, aia_iai AND aja_jaj ≠0, where AND denotes the bitwise AND operation.
Find the length of the shortest cycle in this graph or determine that it doesn’t have cycles at all.
Input
The first line contains one integer n(1≤n≤105)n(1≤n≤10^5)n(1≤n≤105) — number of numbers.
The second line contains nnn integer numbers a1,a2,…,an(0≤ai≤1018)a_1,a_2,…,a_n (0≤a_i≤10^{18})a1,a2,…,an(0≤ai≤1018).
Output
If the graph doesn’t have any cycles, output −1−1−1. Else output the length of the shortest cycle.
Examples
Input
4
3 6 28 9
Output
4
Input
5
5 12 9 16 48
Output
3
Input
4
1 2 4 8
Output
-1
Note
In the first example, the shortest cycle is (9,3,6,28).
In the second example, the shortest cycle is (5,12,9).
The graph has no cycles in the third example.
题意:
给定nnn个数字a1a_1a1 ~ ana_nan,在aia_iai,aja_jaj之间有连边,当且仅当iii≠jjj且aia_iai AND aja_jaj ≠ 000,求形成的图的最小环。
题解:
首先枚举每一位出现的次数,如果次数大于2,那么答案就是3
如果没有出现次数大于2的,那么将所有位出现次数为2的位所对应的数字取出(最多120个),然后建图之后用floyd计算最小环。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int INF=1999122700;
vector<ll>poc[64];
ll mp[504][504],roc[504][504],a[100004];
int n,cnt;
ll gac[504];
int main(){
memset(mp,0,sizeof(mp));
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
for(int j=0;j<=60;j++){
if(a[i]&(1LL<<j))poc[j].push_back(i);
}
}
for(int i=0;i<=60;i++){
if(poc[i].size()>=3)return puts("3"),0;
}
for(int i=0;i<=60;i++){
if(poc[i].size()==2){
for(int j=0;j<poc[i].size();j++){
gac[++cnt]=poc[i][j];
}
}
}
sort(gac+1,gac+cnt+1);
cnt=unique(gac+1,gac+cnt+1)-gac-1;
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++){
mp[i][j]=INF;
roc[i][j]=INF;
}
}
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++){
if(i==j)continue;
if(a[gac[i]]&a[gac[j]]){
mp[i][j]=1;
roc[i][j]=1;
}
}
}
/*
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++){
if(mp[i][j]==INF)cout<<" -1";
else cout<<" "<<mp[i][j];
}
cout<<endl;
}
*/
ll ans=INF;
for(int k=1;k<=cnt;k++){
for(int i=1;i<k;i++){
for(int j=i+1;j<k;j++){
ans=min(ans,roc[i][k]+roc[k][j]+mp[i][j]);
}
}
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++){
mp[i][j]=min(mp[i][j],mp[i][k]+mp[k][j]);
}
}
}
if(ans==INF)puts("-1");
else printf("%lld\n",ans);
/*
for(int i=1;i<=cnt;i++)cout<<a[gac[i]]<<" ";cout<<endl;
for(int i=1;i<=cnt;i++){
for(int j=1;j<=cnt;j++){
if(mp[i][j]==INF)cout<<" -1";
else cout<<" "<<mp[i][j];
}
cout<<endl;
}
*/
return 0;
}