给定一个自然数,分成k部分,A1,A2..的数的和,要求A1<=A2...求有多少种?
原理:整数n拆分成最多不超过m个数的和的拆分数,和n 拆分成最大不超过m的拆分数相等。
根据这个原理,原问题就转化成了求最大拆分为k的拆分个数与最大拆分为k-1的拆分个数的差
f(n,k)=f(n,k-1)+f(n-k,k)
代码如下
同时附上ferrer图的几个原理:
a,整数n拆分成k个数的和的拆分数,和数n拆分最大数位k的拆分数相等
b,整数n拆分成最多不超过m个数的和的拆分数,和n拆分成最大不超过m的拆分数相等。
c,整数n拆分成互不相同的若干奇数的和的的拆分数,和n拆分成自共轭的Ferrers图像的拆分数相等.
【博客整理】