数据转换

Java类型转换与内存溢出

public class Demo05 {
public static void main(String[] args) {
int i = 128;
byte b = (byte)i;//内存溢出

    System.out.println(i);
    System.out.println(b);

    //强制转换    (类型)变量名  高-低需要强制转换

    //自动转换     低-高

    int i1 = 129;
    double b1 = i1;
    System.out.println(i1);
    System.out.println(b1);


    /*注意点
    1.  不能对布尔值进行转换
    2.  不能把对象类型转换为不相干的类型
    3.  在把高容量转换为低容量的时候,强制转换
    4.  转换的时候可能存在内存溢出,或者精度问题
    */

    System.out.println("=======================");
    System.out.println((int)23.7);
    System.out.println((int)-45.89f);

    System.out.println("=======================");
    char c ='a';
    int d = c+1;
    System.out.println(d);
    System.out.println((char)d);


}

}

内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度与稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移与观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论与实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位与导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测与观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究与对比。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值