原文链接:http://www.cnblogs.com/guyj/p/3640199.html
目前了解到的
MATLAB
中分类器有:
K
近邻分类器,随机森林分类器,朴素贝叶斯,集成学习方法,鉴别分析分类器,支持向量机。现将其主要函数使用方法总结如下,更多细节需参考
MATLAB
帮助文件。
设
训练样本: train_data % 矩阵,每行一个样本,每列一个特征
训练样本标签: train_label % 列向量
测试样本: test_data
测试样本标签: test_label
K 近邻分类器 ( KNN )
mdl = ClassificationKNN.fit(train_data,train_label,'NumNeighbors',1);
predict_label = predict(mdl, test_data);
accuracy = length(find(predict_label == test_label))/length(test_label)*100
随机森林分类器( Random Forest )
B = TreeBagger(nTree,train_data,train_label);
predict_label = predict(B,test_data);
朴素贝叶斯 ( Na?ve Bayes )
nb = NaiveBayes.fit(train_data, train_label);
predict_label = predict(nb, test_data);
accuracy = length(find(predict_label == test_label))/length(test_label)*100;
集成学习方法( Ensembles for Boosting, Bagging, or Random Subspace )
ens = fitensemble(train_data,train_label,'AdaBoostM1' ,100,'tree','type','classification');
predict_label = predict(ens, test_data);
鉴别分析分类器( discriminant analysis classifier )
obj = ClassificationDiscriminant.fit(train_data, train_label);
predict_label = predict(obj, test_data);
支持向量机( Support Vector Machine, SVM )
SVMStruct = svmtrain(train_data, train_label);
predict_label = svmclassify(SVMStruct, test_data)
设
训练样本: train_data % 矩阵,每行一个样本,每列一个特征
训练样本标签: train_label % 列向量
测试样本: test_data
测试样本标签: test_label
K 近邻分类器 ( KNN )
mdl = ClassificationKNN.fit(train_data,train_label,'NumNeighbors',1);
predict_label = predict(mdl, test_data);
accuracy = length(find(predict_label == test_label))/length(test_label)*100
随机森林分类器( Random Forest )
B = TreeBagger(nTree,train_data,train_label);
predict_label = predict(B,test_data);
朴素贝叶斯 ( Na?ve Bayes )
nb = NaiveBayes.fit(train_data, train_label);
predict_label = predict(nb, test_data);
accuracy = length(find(predict_label == test_label))/length(test_label)*100;
集成学习方法( Ensembles for Boosting, Bagging, or Random Subspace )
ens = fitensemble(train_data,train_label,'AdaBoostM1' ,100,'tree','type','classification');
predict_label = predict(ens, test_data);
鉴别分析分类器( discriminant analysis classifier )
obj = ClassificationDiscriminant.fit(train_data, train_label);
predict_label = predict(obj, test_data);
支持向量机( Support Vector Machine, SVM )
SVMStruct = svmtrain(train_data, train_label);
predict_label = svmclassify(SVMStruct, test_data)
本文介绍了MATLAB中常用的六种分类器:K近邻、随机森林、朴素贝叶斯、集成学习、鉴别分析和支持向量机。每种分类器都提供了训练和预测的基本用法,并展示了如何评估分类器的准确性。
1万+

被折叠的 条评论
为什么被折叠?



