import numpy as np
import pandas as pd
import time
np.random.seed(2)
N_STATES = 6 # 假设只有5步远
ACTIONS = ['left', 'right']
EPSILON = 0.9
ALPHA = 0.1
GAMMA = 0.9
MAX_EPISODES = 13
FRESH_TIME = 0.3
# 构建Q表格
def build_q_table(n_states, actions):
table = pd.DataFrame(
np.zeros((n_states, len(actions))),
columns=actions,
)
return table
# 选择行为
def choose_action(state, q_table):
state_actions = q_table.iloc[state, :]
if (((state_actions==0).all())
or (np.random.uniform() > EPSILON) # ? 为什么加
):
# 两个状态都为零或一个随机概率
action_name = np.random.choice(ACTIONS)
else:
action_name = state_actions.idxmax()
return action_name
# 获取环境反馈
def get_env_feedback(S, A):
# agent与环境的交互
if A == 'right':
if S == N_STATES - 2:
S_ = 'terminal'
R = 1
else:
S_ = S + 1
R = 0
else:
R = 0
if S ==
强化学习实例1:简单最短路径学习
最新推荐文章于 2025-04-30 16:32:41 发布