Install SQL Server 2008 on a Windows Server 2008 Cluster Part 1

本文介绍如何在Windows Server 2008集群上安装配置SQL Server 2008,涵盖共享磁盘准备、iSCSI连接、应用服务器角色设置等关键步骤。
Problem

In a previous tip on SQL Server 2008 Installation Process, we have seen how different SQL Server 2008 installation is from its previous versions. Now, we have another challenge to face: installing SQL Server 2008 on a Windows Server 2008 Cluster. Windows Server 2008 has a lot of differences from its previous versions and one of them is the clustering feature. How do I go about building a clustered SQL Server 2008 running on Windows Server 2008?

Solution

There have been a lot of changes regarding clustering between Windows Server 2003 and Windows Server 2008. It took quite a lot of effort for us to build a cluster in Windows Server 2003 - from making sure that the server hardware for all nodes are cluster-compatible to creating resource groups. Microsoft has redefined clustering with Windows Server 2008, making it simpler and easier to implement. Now that both SQL Server 2008 and Windows Server 2008 are out in the market for quite some time, it would be a must to prepare ourselves to be able to setup and deploy a clustered environment running both. Installing SQL Server on a stand-alone server or member server in the domain is pretty straight-forward. Dealing with clustering is a totally different story. The goal of this series of tips is to be able to help DBAs who may be charged with installing SQL Server on a Windows Server 2008 cluster.

Prepare the cluster nodes

I will be working on a 2-node cluster throughout the series and you can extend it by adding nodes later on. You can do these steps on a physical hardware or a virtual environment. I opted to do this on a virtual environment running VMWare. To start with, download and install a copy of the evaluation version of Windows Server 2008 Enterprise Edition. This is pretty straight-forward and does not even require any product key or activation. Evaluation period runs for 60 days and can be extended up to 240 days so you have more than enough time to play around with it. Just make sure that you select at least the Enterprise Edition during the installation process and have at least 12GB of disk space for your local disks. This is to make sure you have enough space for both Windows Server 2008 and the binaries for SQL Server 2008. A key thing to note here is that you should already have a domain on which to join these servers and that both have at least 2 network cards - one for the public network and the other for the heartbeat. Although you can run a cluster with a single network card, it isn't recommend at all. I'll lay out the details of the network configuration as we go along. After the installation, my recommendation is to immediately install .NET Framework 3.5 with Service Pack 1 and Windows Installer 4.5 (the one for Windows Server 2008 x86 is named Windows6.0-KB942288-v2-x86.msu). These two are prerequisites for SQL Server 2008 and would speed up the installation process later on.

Carve out your shared disks

We had a lot of challenges in Windows Server 2003 when it comes to shared disks that we will use for our clusters. For one, the 2TB limit which has a lot to do with the master boot record (MBR) has been overcome by having the GUID Partition Table (GPT) support in Windows Server 2008. This allows you to have 16 Exabytes for a partition. Another has been the use of directly attached SCSI storage. This is no longer supported for Failover Clustering in Windows Server 2008. The only supported ones will be Serially Attached Storage (SAS), Fiber Channel and iSCSI. For this example, we will be using an iSCSI storage with the help of an iSCSI Software Initiator to connect to a software-based target. I am using StarWind's iSCSI SAN to emulate a disk image that my cluster will use as shared disks. In preparation for running SQL Server 2008 on this cluster, I recommend creating at least 4 disks - one for the quorum disk, one for MSDTC, one for the SQL Server system databases and one for the user databases. Your quorum and MSDTC disks can be as small as 1GB, although Microsoft TechNet specifies a 512MB minimum for the quorum disk. If you decide to use iSCSI as your shared storage in a production environment, a dedicated network should be used so as to isolate it from all other network traffic. This also means having a dedicated network card on your cluster nodes to access the iSCSI storage.

Present your shared disks to the cluster nodes

Windows Server 2008 comes with iSCSI Initiator software that enables connection of a Windows host to an external iSCSI storage array using network adapters. This differs from previous versions of Microsoft Windows where you need to download and install this software prior to connecting to an iSCSI storage. You can launch the tool from Administrative Tools and select iSCSI Initiator.

To connect to the iSCSI target:

  1. In the iSCSI Initiator Properties page, click on the Discovery tab.

  2. Under the Target Portals section, click on the Add Portal button.
  3. In the Add Target Portal dialog, enter the DNS name or IP address of your iSCSI Target and click OK. If you are hosting the target on another Windows host as an image file, make sure that you have your Windows Firewall configured to enable inbound traffic to port 3260. Otherwise, this should be okay.

  4. Back in the iSCSI Initiator Properties page, click on the Targetstab. You should see a list of the iSCSI Targets that we have defined earlier

  5. Select one of the targets and click on the Log on button.
  6. In the Log On to Target dialog, select the Automatically restore this connection when the computer starts checkbox. ClickOK.

  7. Once you are done, you should see the status of the target change to Connected. Repeat this process for all the target disks we initially created on both of the servers that will become nodes of your cluster.

Once the targets have been defined using the iSCSI Initiator tool, you can now bring the disks online, initialize them, and create new volumes using the Server Manager console. I won't go into much detail on this process as it is similar to how we used to do it in Windows Server 2003, except for the new management console. After the disks have been initialized and volumes created, you can try logging in to the other server and verify that you can see the disks there as well. You can rescan the disks if they haven't yet appeared.

Adding Windows Server 2008 Application Server Role

Since we will be installing SQL Server 2008 later on, we will have to add the Application Server role on both of the nodes. A server role is a program that allows Windows Server 2008 to perform a specific function for multiple clients within a network. To add the Application Server role,

  1. Open the Server Manager console and select Roles.
  2. Click the Add Roles link. This will run the Add Roles Wizard

  3. In the Select Server Roles dialog box, select the Application Server checkbox. This will prompt you to add features required for Application Server role. Click Next.

  4. In the Application Server dialog box, click Next.

  5. In the Select Role Services dialog box, select Incoming Remote Transactions and Outgoing Remote Transactionscheckboxes. These options will be used by MSDTC. Click Next

  6. In the Confirm Installation Selections dialog box, click Install. This will go thru the process of installing the Application Server role

  7. In the Installation Results dialog box, click Close. This completes the installation of the Application Server role on the first node. You will have to repeat this process for the other server

We have now gone thru the process of creating the cluster at this point. In the next tip in this series, we will go thru the process of installing the Failover Cluster feature, validating the nodes that will become a part of the cluster and creating the cluster itself. And that is just on the Windows side. Once we manage to create a working Windows Server 2008 cluster, that's the only time we can proceed to install SQL Server 2008.

Next Steps
  • Download and install an Evaluation copy of Windows Server 2008 for this tip
  • Start working on building your test environment in preparation for building a SQL Server 2008 cluster on Windows Server 2008
  • Read Part2Part3 and Part4


Last Update: 2/13/2009 

源文https://www.mssqltips.com/sqlservertip/1687/install-sql-server-2008-on-a-windows-server-2008-cluster-part-1/

该数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类型为日期时间,记录了每个数据点的采集时刻。序列起始于2024年1224日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典型温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点型变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能与潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点型变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整型分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类型变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模型实现故障预测与诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化与典型故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值