王家林人工智能AI 第七节课:四种性能优化Matrix编写AI框架实战(Gradient Descent的陷阱、及几种常见的性能优化方式实战)老师微信13928463918

本文介绍了四种性能优化方法在矩阵编写AI框架中的应用,重点探讨了梯度下降的原理及其陷阱。文章通过实例解释了梯度下降的工作机制,包括可能遇到的问题如步幅过大、局部极小值和坡度过小,以及对应的解决方案。此外,还讨论了神经网络中的随机梯度下降(SGD)和如何改进网络以提高优化效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

王家林人工智能AI 第七节课:四种性能优化Matrix编写AI框架实战(Gradient Descent的陷阱、及几种常见的性能优化方式实战)老师微信13928463918


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型与Agent智能体

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值