1、问题描述
在
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)的时间复杂度和
O
(
1
)
O(1)
O(1)的空间复杂度内对链表进行排序。
例如:
输入: 3->2->1->5->4
输出:1->2->3->4->5
2、解题思路
- 思路1:最简单的方法是利用选择排序的思想,每次从链表中选择第k大的数,插入表头(头节点的后面),k=1,2,…,n。这种方法的时间复杂度为 O ( n 2 ) O(n^2) O(n2),空间复杂度为 O ( 1 ) O(1) O(1),明显不符合要求。
- 思路2:要求时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn),类比数组的归并排序,自然也会想到对链表采用归并排序的方法,即将链表递归的划分成两部分,分别对每一部分进行排序,最后再将已经已排行序的两部分合并成一部分。归并算法主要涉及到cut和merge,cut是将链表不断地切成两部分,如果采用递归,则时间复杂度为 O ( l o g n ) O(logn) O(logn),空间复杂度也为 O ( l o g n ) O(logn) O(logn)(因为进行 l o g 2 n log_{2}n log2n次调用),并不满足题目要求,所以不能采用递归的方法;merge是将两个排好序的链表连接成新的排序列表。下面介绍一种自底向上的归并排序算法,它的基本思想如下:
- 这个方法主要用到链表中的两个操作:
- (1)merge(list1,list2):二路归并,把两个有序的链表连接成一个新的有序链表;
- (2)cut(list,n):将链表list切掉前n个节点,并返回后半部分的链表头;
- (3)dummyhead:创建一个新的节点作为链表第一个节点的前置节点,这样,就可以不用考虑链表头节点是否为空的情况了,这在删除一个节点时十分重要,返回时只需要返回dummyhead->next,而不用存储头节点。
- 整个算法的思想如下:
输入:链表
输出:排好序的新链表
dummyhead->next = head;
for(j=1;j<list.length; j=j*2)
{
current = dummyhead->next;
tail = dummyhead
while (current !=null ){
left = current;
right = cut(current,step);
current = cut(right,step);
tail = merge(left,right)
while(tail->next != null) tail = tail->next;
}
}
以4->3->2->1->6->5为例解释该算法的求解过程:
3、代码实现
- cut函数实现:
LinkNode* Cut(LinkNode* list, int node_nums){
LinkNode* dummyhead = new LinkNode;
dummyhead->next = list;
LinkNode* pointer = dummyhead;
while (pointer->next && node_nums){
pointer = pointer->next;
node_nums -= 1;
}
LinkNode* lefthead = pointer->next;
pointer->next = nullptr;
return lefthead;
}
- merge函数实现:
LinkNode* Merge(LinkNode* list1, LinkNode* list2){
LinkNode* p1=list1;
LinkNode* p2=list2;
LinkNode* dummyhead = new LinkNode;
LinkNode* iter=dummyhead;
while (p1 != nullptr && p2 != nullptr){
if (p1->value < p2->value){
iter->next = p1;
p1 = p1->next;
}
else{
iter->next = p2;
p2 = p2->next;
}
iter = iter->next;
}
while (p1 != nullptr){
iter->next = p1;
p1 = p1->next;
iter = iter->next;
}
while (p2 != nullptr){
iter->next = p2;
p2 = p2->next;
iter = iter->next;
}
return dummyhead->next;
}
SortedList函数实现:
LinkNode* SortedList(LinkNode* headpointer){
if (!headpointer || !headpointer->next){
return nullptr;
}
LinkNode* dummyhead = new LinkNode;
LinkNode* iter = headpointer->next;
int len = 0;
while (iter != nullptr){
len += 1;
iter = iter->next;
}
dummyhead->next = headpointer->next;
LinkNode* current = nullptr;
LinkNode* tail = nullptr;
for (int step = 1; step < len; step *= 2){
current = dummyhead->next;
tail = dummyhead;
while (current != nullptr){
LinkNode* left = current;
LinkNode* right = Cut(current, step);
current = Cut(right, step);
tail->next = Merge(left, right);
while (tail->next){
tail = tail->next;
}
}
}
return dummyhead->next;
}
- LinkList.h
struct LinkNode{
int value;
LinkNode* next=nullptr;
};
class LinkList{
public:
LinkNode* headpointer;
LinkList(int* value_array,int len);
void PrintLinkList();
};
- LinkList.cpp
#include"LinkList.h"
#include<iostream>
using namespace std;
LinkList::LinkList(int* array_value,int len){
//LinkNode headnode;
//LinkNode* pointer = &headnode;
LinkNode* headnode = new LinkNode();
LinkNode* pointer = headnode;
//int len = sizeof(array_value) / sizeof(int);
for (int i = 0; i < len; i++){
LinkNode* newnode = new LinkNode();
newnode->value = array_value[i];
pointer->next = newnode;
pointer = pointer->next;
}
this->headpointer = headnode;
}
void LinkList::PrintLinkList(){
LinkNode* pointer = this->headpointer->next;
while (pointer->next != nullptr){
cout << pointer->value << "->";
pointer = pointer->next;
}
cout <<pointer->value<<endl;
}
- 主函数
#include<iostream>
#include"LinkList.h"
using namespace std;
//#define test
int main(){
int values[] = {4,3,2,1,6,5};
LinkList* list = new LinkList(values,sizeof(values)/sizeof(values[0]));
#ifdef test
LinkNode* pointer = list->headpointer->next;
while (pointer != nullptr){
cout << pointer->value << "-->";
pointer = pointer->next;
}
cout << endl;
#else
cout << "before sorting:" << endl;
list->PrintLinkList();
cout << "after sorting:" << endl;
LinkNode* result = SortedList(list->headpointer);
LinkNode* pointer = result;
while (pointer && pointer->next != nullptr){
cout << pointer->value << "->";
pointer = pointer->next;
}
cout << pointer->value << endl;
#endif
return 0;
}