Python Dataframe 指定多列去重、求差集

本文介绍如何使用Python的Pandas库进行数据去重及求差集操作,详细解析了drop_duplicates方法的使用,包括指定多列去重及求两个DataFrame之间的差集,适合数据分析初学者学习。
部署运行你感兴趣的模型镜像

去重

指定多列去重,这是在dataframe没有独一无二的字段作为PK(主键)时,需要指定多个字段一起作为该行的PK,在这种情况下对整体数据进行去重。

主要用到了drop_duplicates方法,并设置参数subset为多个字段名构成的数组。

>>>import pandas as pd  
>>>data={'state':[1,1,2,2,1,2,2],'pop':['a','b','c','d','b','c','d']}
>>>frame=pd.DataFrame(data)  
>>>frame
	pop	state
0	a	1
1	b	1
2	c	2
3	d	2
4	b	1
5	c	2
6	d	2
>>>frame.drop_duplicates(subset=['pop','state'])
	pop	state
0	a	1
1	b	1
2	c	2
3	d	2

求差集

假设有两个dataframe为a和b,a和b可以是相互包含的关系,现在想要将a中和b重复的内容去掉,也就是求差集,步骤如下:

  • (1)需要对两个dataframe进行去重。
  • (2)利用append方法,a=a.append(b)
  • (3)去重,利用drop_duplicates方法,a=a.drop_duplicates(),以及设置参数keep=False,意思就是只要有重复,重复的记录都去掉。(默认keep='first',也就是保留第一条记录)
>>>data_a={'state':[1,1,2],'pop':['a','b','c']}
>>>data_b={'state':[1,2,3],'pop':['b','c','d']}
>>>a=pd.DataFrame(data_a)
>>>a 
	pop	state
0	a	1
1	b	1
2	c	2
>>>b=pd.DataFrame(data_b) 
>>>b
	pop	state
0	b	1
1	c	2
2	d	3
>>>a = a.append(b)
>>>result = a.drop_duplicates(subset=['pop','state'],keep=False)
>>>result
	pop	state
0	a	1

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值