VGG16学习笔记

本文介绍了VGG16卷积神经网络的基本结构和在2014年ILSVRC比赛中的优秀表现。通过Keras详细讲解了如何实现和应用VGG16,包括预训练权重的加载、模型预测以及模型的保存和恢复。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 简述  

VGG卷积神经网络是牛津大学在2014年提出来的模型。当这个模型被提出时,由于它的简洁性和实用性,马上成为了当时最流行的卷积神经网络模型。它在图像分类和目标检测任务中都表现出非常好的结果。在2014年的ILSVRC比赛中,VGG 在Top-5中取得了92.3%的正确率。

VGG结构图


VGG-16

VGG模型有一些变种,其中最受欢迎的当然是 VGG-16,这是一个拥有16层的模型。你可以看到它需要维度是 224*224*3 的输入数据。



二. Keras实现VGG16

from keras import Sequential
from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Flatten, Dropout
from keras.layers import Input
from keras.optimizers import SGD
model = Sequential()

# BLOCK 1
model.add(Conv2D(filters = 64, kernel_size = (3, 3), activation = 'relu', padding = 'same', name = 'block1_conv1', input_shape = (224, 224, 3)))   
model.add(Conv2D(filters = 64, kernel_size = (3, 3), activation = 'relu', padding = 'same', name = 'block1_conv2'))
model.add(MaxPooling2D(pool_size = (2, 2), strides = (2, 2), name = 'block1_pool'))

# BLOCK2
model.add(Conv2D(filters = 128, kernel_size = (3, 3), activation = 'relu', padding = 'same', name = 'block2_conv1
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值