An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.
InputInput consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.
OutputFor each problem instance, output consists of one line. This line should be one of the following three:
Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
Sample InputSorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.
where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.
4 6 A<B A<C B<C C<D B<D A<B 3 2 A<B B<A 26 1 A<Z 0 0Sample Output
Sorted sequence determined after 4 relations: ABCD. Inconsistency found after 2 relations. Sorted sequence cannot be determined.
题意:看第几行边就能看出有唯一的顺序或者 成环 ,如果所有边加完后都没有唯一顺序也没成环,那么输出
Sorted sequence cannot be determined.
解:每加新的边,都进行1次拓扑排序
#include<stdio.h>
#include<string>
#include<string.h>
#include<iostream>
#include<math.h>
#include<queue>
#include<vector>
#include<algorithm>
#include<map>d
#define inf 0x3f3f3f3f
#define ll long long
#define maxx 5000005
using namespace std;
int n,m,tot,flag,cnt,flag2;
struct node
{
int en,next;
}e[10000];
int p[10000];
int a[10000];
int b[10000];
int vis[10000];
int ans[10000];
void add(int u,int v)
{
e[tot].en=v;
e[tot].next=p[u];
p[u]=tot++;
}
void aa(int u)
{
int kk=0;
int pp=0;
queue<int>q;
for(int i=0;i<n;i++)
if(vis[i]&&!b[i]) q.push(i);
while(!q.empty())
{
int x=q.front();
q.pop();
if(!q.empty()) kk=1;
ans[pp++]=x;
for(int i=p[x];i+1;i=e[i].next)
{
int y=e[i].en;
b[y]--;
if(!b[y]) q.push(y);
}
}
if(pp!=cnt)
flag=u;
if(!kk&&pp==n)
flag2=u;
}
int main()
{
while(~scanf("%d%d",&n,&m)&&n+m)
{
char s[10];
memset(p,-1,sizeof(p));
memset(a,0,sizeof(a));
memset(vis,0,sizeof(vis));
tot=0;
cnt=0;
flag=0;
flag2=0;
for(int i=1;i<=m;i++)
{
scanf("%s",s);
if(flag) continue;
if(flag2) continue;
int u=s[0]-'A';
int v=s[2]-'A';
if(!vis[u])
{
vis[u]=1;
cnt++;
}
if(!vis[v])
{
vis[v]=1;
cnt++;
}
add(u,v);
a[v]++;
memcpy(b,a,sizeof(a));
aa(i);
}
if(flag)
{
printf("Inconsistency found after %d relations.\n",flag);
continue;
}
if(flag2)
{
printf("Sorted sequence determined after %d relations: ",flag2);
for(int i=0;i<n;i++)
printf("%c",ans[i]+'A');
printf(".\n");
continue;
}
printf("Sorted sequence cannot be determined.\n");
}
}