POJ2663(矩阵+递推)

Tri Tiling
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 9786 Accepted: 5023

Description

In how many ways can you tile a 3xn rectangle with 2x1 dominoes? 
Here is a sample tiling of a 3x12 rectangle. 

Input

Input consists of several test cases followed by a line containing -1. Each test case is a line containing an integer 0 <= n <= 30.

Output

For each test case, output one integer number giving the number of possible tilings.

Sample Input

2
8
12
-1

Sample Output

3
153
2131

Source


n为奇数肯定为0,n为偶数,每次都是加两列,我们把两列看为一列,如果这一列与前面分开就只有三种方法即3*a[n-2],如果这一列不与前面的分开,那么不可分解矩形都只有两种情况所以为2*(a[n-4]+a[n-6]+……a[0])
化简即为a[n]=4*a[n-2]-a[n-4]
#include<iostream>
#include<cstdlib>
#include<stdio.h>
#define ll long long
using namespace std;
ll a[31];
int main()
{
    ll n;
    a[0]=1;a[2]=3;
    for(int i=4;i<=30;i+=2)
    a[i]=4*a[i-2]-a[i-4];
    while(scanf("%lld",&n))
    {
        if(n==-1) break;
        printf("%lld\n",a[n]);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值