树的概述
树结构的特点是:它的每一个结点都可以有不止一个直接后继,除根结点外的所有结点都有且只有一个直接前驱。以下具体地给出树的定义及树的数据结构表示。
树的定义
树是由一个或多个结点组成的有限集合,其中: ⒈必有一个特定的称为根(ROOT)的结点; ⒉剩下的结点被分成n>=0个互不相交的集合T1、T2、......Tn,而且, 这些集合的每一个又都是树。树T1、T2、......Tn被称作根的子树(Subtree)。 树的 递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树 1.树的度——也即是宽度,简单地说,就是结点的分支数。以组成该树各结点中最大的度作为该树的度,如上图的树,其度为3;树中度为零的结点称为叶结点或终端结点。树中度不为零的结点称为分枝结点或非终端结点。除根结点外的分枝结点统称为内部结点。 2.树的深度——组成该树各结点的最大层次,如上图,其深度为3; 3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林; 4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。树的表示
树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。如上图可写成如下形式: (A(B(E(K,L),F),C(G),D(H(M),I,J)))二叉树
1.二叉树的基本形态
二叉树也是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:(1)空二叉树——(a);(2)只有一个根结点的二叉树——(b);
(3)只有左子树——(c); (4)只有右子树——(d); (5)完全二叉树——(e)
注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。
2.两个重要的概念
(1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h 层有叶子节点,这就是完全二叉树。(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶结点都处在最底层的二叉树,。