愉快的学习就从翻译开始吧_Multi-step Time Series Forecasting with Long Short-Term Memory Networks in Python_0

The Long Short-Term Memory network or LSTM is a recurrent neural network that can learn and forecast long sequences.

长短期记忆网络或者LSTM是一种可以学习和预测长序列的递归神经网络

A benefit of LSTMs in addition to learning long sequences is that they can learn to make a one-shot multi-step forecast which may be useful for time series forecasting.

除了学习长序列之外,LSTM的好处是他们可以学习做出一步式多步预测(一步输入,输出多步),这对于时间序列预测也许是有用的

A difficulty with LSTMs is that they can be tricky to configure and it can require a lot of preparation to get the data in the right format for learning.

LSTM的困难在于它们配置起来可能很棘手,并且需要大量的准备才能以正确的格式获取数据以进行学习

In this tutorial, you will discover how you can develop an LSTM for multi-step time series forecasting in Python with Keras.

在本教程中,您将了解如何使用Keras在Python中开发用于多步时间序列预测的LSTM。

After completing this tutorial, you will know:

完成本教程后,您将知道:

  • How to prepare data for multi-step time series forecasting.
    如何为多步时间序列预测准备数据
  • How to develop an LSTM model for multi-step time series forecasting.
    如何开发一个多步时间序列预测的LSTM模型
  • How to evaluate a multi-step time series forecast.
    如何评估一个多步时间序列预测

Let’s get started.

让我们开始吧

Multi-step Time Series Forecasting with Long Short-Term Memory Networks in Python

Multi-step Time Series Forecasting with Long Short-Term Memory Networks in Python
Photo by Tom Babich, some rights reserved.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值