72. Edit Distance

本文深入探讨了编辑距离算法,一种用于衡量两个字符串相似度的方法。通过插入、删除或替换字符的操作,文章详细解释了如何计算从一个单词转换到另一个单词所需的最小操作数,并提供了具体的例子进行说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation: 
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation: 
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

最近在做关于文本相似度的项目,edit distance是判断文本相似度的一种算法

/**
 * @param {string} word1
 * @param {string} word2
 * @return {number}
 */
var minDistance = function(word1, word2) {
    let len1 = word1.length
    let len2 = word2.length
    let matrix = [], temp = 0 
    for(let i = 0; i <= len1; i ++){ 
        matrix[i] = []
        matrix[i][0] = i
    }
    for(let i = 1; i <= len2; i ++) {
        matrix[0][i] = i
    }
    for(let i = 1; i <= len1; i ++) {
        for(let j = 1;j <= len2; j ++) {
            word1[i - 1] === word2[j - 1] ? temp = 0 : temp = 1 
            matrix[i][j] = Math.min(matrix[i - 1][j] + 1, matrix[i][j - 1] + 1, matrix[i - 1][j - 1] + temp)
        }
    }   
    return matrix[len1][len2]
    
};

Runtime: 112 ms, faster than 50.00% of JavaScript online submissions for Edit Distance.

Memory Usage: 41.5 MB, less than 43.59% of JavaScript online submissions for Edit Distance.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值