『PyTorch』矩阵乘法总结

本文详细介绍了PyTorch中四种常见的矩阵运算方法:二维矩阵乘法torch.mm(), 三维带batch的矩阵乘法torch.bmm(), 多维矩阵乘法torch.matmul(), 以及矩阵逐元素乘法torch.mul()。此外,还对比了运算符@和*在矩阵运算中的不同作用。

1. 二维矩阵乘法 torch.mm()

torch.mm(mat1, mat2, out=None),其中mat1(\(n\times m\)),mat2(\(m\times d\)),输出out的维度是(\(n\times d\))。

该函数一般只用来计算两个二维矩阵的矩阵乘法,并且不支持broadcast操作。

2. 三维带batch的矩阵乘法 torch.bmm()

由于神经网络训练一般采用mini-batch,经常输入的时三维带batch的矩阵,所以提供torch.bmm(bmat1, bmat2, out=None),其中bmat1(\(b\times n \times m\)),bmat2(\(b\times m \times d\)),输出out的维度是(\(b \times n \times d\))。

该函数的两个输入必须是三维矩阵且第一维相同(表示Batch维度),不支持broadcast操作。

3. 多维矩阵乘法 torch.matmul()

torch.matmul(input, other, out=None)支持broadcast操作,使用起来比较复杂。

针对多维数据 matmul()乘法,我们可以认为该matmul()乘法使用使用两个参数的后两个维度来计算,其他的维度都可以认为是batch维度。假设两个输入的维度分别是input(

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值