import tensorflow as tf
batch_size = n
# 2是输出节点的个数
x = tf.placeholder(tf.float32, shape=[batch_size, 2], name='x-input')
y_ = tf.placeholder(tf.float32, shape=[batch_size, 1], name='y-input')
# 定义神经网络结构和优化算法。
loss = ...
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss)
# 训练神经网络
with tf.Session() as sess:
# 参数初始化
init_op = tf.global_variables_initializer()
sess.run(init_op)
# 迭代更新参数
# 定义训练多少个batch
STEPS = 5000
for i in range(STEPS):
current_X = ...
current_Y = ...
sess.run(train_step,feed_dict={x:current_X,y_:current_Y})