B. Complete The Graph
分类:构造、最短路
1.题意概述
- 给你由
n
个点
m 条边构成的图,有些边权是0,现在要你把所有的0改成正整数,问你是否存在一种改法使得由 s 到t 的最短路是 L ?
2.解题思路
我们先把那些边权是0的边去掉,跑一遍spfa,如果这样条件下的最短路都小于
L 那肯定是无解!如果上述没出现说明可能有解,然后再利用spfa的贪心性质,先给那些边权为0的点先分配权值为1,每一次边权都贪心地改成 l−dis(ui,ed) ,加完以后再跑一遍最短路,如果还是大于 L 则肯定无解了。
3.AC代码
#include <bits/stdc++.h>
#define INF 1LL << 60
#define maxn 10010
#define N 1111
#define eps 1e-6
#define pi acos(-1.0)
#define e exp(1.0)
using namespace std;
const int mod = 1e9 + 7;
typedef long long ll;
typedef unsigned long long ull;
struct node
{
int to, id, flag;
ll val;
node(int a, ll b, int c, int d) { to = a; val = b; flag = c; id = d; }
};
struct edge
{
int u, v, flag;
ll w;
} E[maxn];
vector<node> mp[N];
ll dis[N], dist[N];
bool vis[N];
bool flag;
void spfa(int sta, int ed, int n, int l, ll dis[])
{
memset(vis, 0, sizeof(vis));
fill(dis, dis + n + 1, INF);
deque<int> q;
vis[sta] = 1;
dis[sta] = 0;
q.push_back(sta);
while (!q.empty())
{
int u = q.front();
q.pop_front();
vis[u] = 0;
int sz = mp[u].size();
for (int i = 0; i < sz; i++)
{
int v = mp[u][i].to;
ll w = E[mp[u][i].id].w;
int edge_flag = mp[u][i].flag;
if (flag)
{
if (w != INF && dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if (!vis[v])
{
vis[v] = 1;
if (!q.empty() && dis[v] <= dis[q.front()])
q.push_front(v);
else
q.push_back(v);
}
}
}
else
{
if (edge_flag)
{
ll need = l - dist[ed];
if (dist[v] + need > dis[u] + w)
w = E[mp[u][i].id].w = mp[u][i].val = dist[v] + need - dis[u];
}
if (w != INF && dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if (!vis[v])
{
vis[v] = 1;
if (!q.empty() && dis[v] <= dis[q.front()])
q.push_front(v);
else
q.push_back(v);
}
}
}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
long _begin_time = clock();
#endif
int n, m, l, s, t;
while (~scanf("%d%d%d%d%d", &n, &m, &l, &s, &t))
{
for (int i = 0; i <= n; i++)
mp[i].clear();
flag = 1;
for (int i = 0; i < m; i++)
{
scanf("%d%d%lld", &E[i].u, &E[i].v, &E[i].w);
if (!E[i].w)
{
E[i].w = 1;
E[i].flag = 1;
}
mp[E[i].u].push_back(node(E[i].v, E[i].w, E[i].flag, i));
mp[E[i].v].push_back(node(E[i].u, E[i].w, E[i].flag, i));
}
spfa(s, t, n, l, dist);
if (dist[t] > l)
{
puts("NO");
continue;
}
flag = 0;
spfa(s, t, n, l, dis);
if (dis[t] == l)
{
puts("YES");
for (int i = 0; i < m; i++)
printf("%d %d %lld\n", E[i].u, E[i].v, E[i].w);
}
else
puts("NO");
}
#ifndef ONLINE_JUDGE
long _end_time = clock();
printf("time = %ld ms.", _end_time - _begin_time);
#endif
return 0;
}