1.题目描述:
The Shortest Path
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3314 Accepted Submission(s): 1097
Problem Description
There are N cities in the country. Each city is represent by a matrix size of M*M. If city A, B and C satisfy that A*B = C, we say that there is a road from A to C with distance 1 (but that does not means there is a road from C to A).
Now the king of the country wants to ask me some problems, in the format:
Is there is a road from city X to Y?
I have to answer the questions quickly, can you help me?
Now the king of the country wants to ask me some problems, in the format:
Is there is a road from city X to Y?
I have to answer the questions quickly, can you help me?
Input
Each test case contains a single integer N, M, indicating the number of cities in the country and the size of each city. The next following N blocks each block stands for a matrix size of M*M. Then a integer K means the number of questions the king will ask, the following K lines each contains two integers X, Y(1-based).The input is terminated by a set starting with N = M = 0. All integers are in the range [0, 80].
Output
For each test case, you should output one line for each question the king asked, if there is a road from city X to Y? Output the shortest distance from X to Y. If not, output "Sorry".
Sample Input
3 2 1 1 2 2 1 1 1 1 2 2 4 4 1 1 3 3 2 1 1 2 2 1 1 1 1 2 2 4 3 1 1 3 0 0
Sample Output
1 Sorry
Source
Recommend
lcy
2.题意概述:
全国有N个城市。每个城市由M * M的矩阵大小表示。如果城市A,B和C满足A * B = C,我们说有一条从A到C的道路距离为1(但这并不意味着有一条从C到A的道路)。
问某点i到j是否有最短路,有则输出最度阿奴,无则输出0
3.解题思路:
直接码一发矩阵乘法再判断就行,这题注意的是a b c矩阵两两都不相同
4.AC代码:
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define maxn 100100
#define N 88
#define eps 1e-6
#define pi acos(-1.0)
#define e exp(1.0)
using namespace std;
const int mod = 1e9 + 7;
typedef long long ll;
typedef unsigned long long ull;
struct node
{
int to, val;
node(int a, int b) { to = a; val = b; }
};
struct matrix
{
int mat[N][N];
int sz;
friend matrix operator* (matrix a, matrix b)
{
matrix ans;
ans.sz = a.sz;
memset(ans.mat, 0, sizeof(ans.mat));
for (int i = 0; i < ans.sz; i++)
for (int j = 0; j < ans.sz; j++)
for (int k = 0; k < ans.sz; k++)
ans.mat[i][j] += a.mat[i][k] * b.mat[k][j];
return ans;
}
friend bool operator== (matrix a, matrix b)
{
int flag = 1;
for (int i = 0; i < a.sz && flag; i++)
for (int j = 0; j < a.sz; j++)
if (a.mat[i][j] != b.mat[i][j])
{
flag = 0;
break;
}
return flag;
}
} M[N];
vector<node> mp[N];
int dis[N];
bool vis[N];
void spfa(int sta, int n)
{
memset(vis, 0, sizeof(vis));
fill(dis, dis + n + 1, INF);
deque<int> q;
vis[sta] = 1;
dis[sta] = 0;
q.push_back(sta);
while (!q.empty())
{
int u = q.front();
q.pop_front();
vis[u] = 0;
int sz = mp[u].size();
for (int i = 0; i < sz; i++)
{
int v = mp[u][i].to;
int w = mp[u][i].val;
if (dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if (!vis[v])
{
vis[v] = 1;
if (!q.empty() && dis[v] <= dis[q.front()])
q.push_front(v);
else
q.push_back(v);
}
}
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
long _begin_time = clock();
#endif
int n, m;
while (~scanf("%d%d", &n, &m), n + m)
{
for (int i = 0; i < n; i++)
{
mp[i].clear();
M[i].sz = m;
for (int a = 0; a < m; a++)
for (int b = 0; b < m; b++)
scanf("%d", &M[i].mat[a][b]);
}
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
{
matrix tmp = M[i] * M[j];
for (int k = 0; k < n; k++)
if (k != i && k != j && M[k] == tmp)
mp[i].push_back(node(k, 1));
}
int k;
scanf("%d", &k);
while (k--)
{
int s, t;
scanf("%d%d", &s, &t);
s--;
t--;
spfa(s, n);
if (dis[t] == INF)
puts("Sorry");
else
printf("%d\n", dis[t]);
}
}
#ifndef ONLINE_JUDGE
long _end_time = clock();
printf("time = %ld ms.", _end_time - _begin_time);
#endif
return 0;
}