linux性能监控命令

本文介绍了Linux系统中常用的性能监控命令,包括vmstat、iostat、top、iotop、lsof、free、time和uptime。这些命令用于监控进程、内存、I/O、CPU使用情况以及系统负载,帮助管理员了解系统运行状态并进行性能优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

linux性能监控命令

linux性能监控命令: 参考链接

1、 vmstat命令

vmstat命令的含义为显示虚拟内存状态(“Virtual Memory Statistics”),但是它可以报告关于进程、内存、I/O等系统整体运行状态。

语法

vmstat(选项)(参数)

选项

-a:显示活动内页;
-f:显示启动后创建的进程总数;
-m:显示slab信息;
-n:头信息仅显示一次;
-s:以表格方式显示事件计数器和内存状态;
-d:报告磁盘状态;
-p:显示指定的硬盘分区状态;
-S:输出信息的单位。

参数

  • 事件间隔:状态信息刷新的时间间隔;
  • 次数:显示报告的次数。

实例

vmstat 3
procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu------
 r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st
 0  0    320  42188 167332 1534368    0    0     4     7    1    0  0  0 99  0  0
 0  0    320  42188 167332 1534392    0    0     0     0 1002   39  0  0 100  0  0
 0  0    320  42188 167336 1534392    0    0     0    19 1002   44  0  0 100  0  0
 0  0    320  42188 167336 1534392    0    0     0     0 1002   41  0  0 100  0  0
 0  0    320  42188 167336 1534392    0    0     0     0 1002   41  0  0 100  0  0

字段说明:

Procs(进程)

  • r: 运行队列中进程数量,这个值也可以判断是否需要增加CPU。(长期大于1)
  • b: 等待IO的进程数量。

Memory(内存)

  • swpd: 使用虚拟内存大小,如果swpd的值不为0,但是SI,SO的值长期为0,这种情况不会影响系统性能。
  • free: 空闲物理内存大小。
  • buff: 用作缓冲的内存大小。
  • cache: 用作缓存的内存大小,如果cache的值大的时候,说明cache处的文件数多,如果频繁访问到的文件都能被cache处,那么磁盘的读IO bi会非常小。

Swap

  • si: 每秒从交换区写到内存的大小,由磁盘调入内存。
  • so: 每秒写入交换区的内存大小,由内存调入磁盘。

注意:内存够用的时候,这2个值都是0,如果这2个值长期大于0时,系统性能会受到影响,磁盘IO和CPU资源都会被消耗。有些朋友看到空闲内存(free)很少的或接近于0时,就认为内存不够用了,不能光看这一点,还要结合si和so,如果free很少,但是si和so也很少(大多时候是0),那么不用担心,系统性能这时不会受到影响的。

IO(现在的Linux版本块的大小为1kb)

  • bi: 每秒读取的块数
  • bo: 每秒写入的块数

注意:随机磁盘读写的时候,这2个值越大(如超出1024k),能看到CPU在IO等待的值也会越大。

system(系统)

  • in: 每秒中断数,包括时钟中断。
  • cs: 每秒上下文切换数。

注意:上面2个值越大,会看到由内核消耗的CPU时间会越大。

CPU(以百分比表示)

  • us: 用户进程执行时间百分比(user time)

us的值比较高时,说明用户进程消耗的CPU时间多,但是如果长期超50%的使用,那么我们就该考虑优化程序算法或者进行加速。

  • sy: 内核系统进程执行时间百分比(system time)

sy的值高时,说明系统内核消耗的CPU资源多,这并不是良性表现,我们应该检查原因。

  • wa: IO等待时间百分比

wa的值高时,说明IO等待比较严重,这可能由于磁盘大量作随机访问造成,也有可能磁盘出现瓶颈(块操作)。

  • id: 空闲时间百分比

2、 iostat命令

iostat命令被用于监视系统输入输出设备和CPU的使用情况。它的特点是汇报磁盘活动统计情况,同时也会汇报出CPU使用情况。同vmstat一样,iostat也有一个弱点,就是它不能对某个进程进行深入分析,仅对系统的整体情况进行分析。

语法

iostat(选项)(参数)

选项

-c:仅显示CPU使用情况;
-d:仅显示设备利用率;
-k:显示状态以千字节每秒为单位,而不使用块每秒;
-m:显示状态以兆字节每秒为单位;
-p:仅显示块设备和所有被使用的其他分区的状态;
-t:显示每个报告产生时的时间;
-V:显示版号并退出;
-x:显示扩展状态。

参数

  • 间隔时间:每次报告的间隔时间(秒);
  • 次数:显示报告的次数。

实例

iostat -x /dev/sda1来观看磁盘I/O的详细情况:

iostat -x /dev/sda1 
Linux 2.6.18-164.el5xen (localhost.localdomain)
2010年03月26日  
 
avg-cpu:  %user   %nice %system %iowait 
%steal   %idle  
            0.11    0.02    0.18    0.35   
0.03    99.31  
 
Device:         tps   Blk_read/s    Blk_wrtn/s  
Blk_read   Blk_wrtn  
sda1                0.02          0.08       
0.00          2014               4 

详细说明:第二行是系统信息和监测时间,第三行和第四行显示CPU使用情况(具体内容和mpstat命令相同)。这里主要关注后面I/O输出的信息,如下所示:

标示说明
Device监测设备名称
rrqm/s每秒需要读取需求的数量
wrqm/s每秒需要写入需求的数量
r/s每秒实际读取需求的数量
w/s每秒实际写入需求的数量
rsec/s每秒读取区段的数量
wsec/s每秒写入区段的数量
rkB/s每秒实际读取的大小,单位为KB
wkB/s每秒实际写入的大小,单位为KB
avgrq-sz需求的平均大小区段
avgqu-sz需求的平均队列长度
await等待I/O平均的时间(milliseconds)
svctmI/O需求完成的平均时间
%util被I/O需求消耗的CPU百分比

3、top命令

top命令可以实时动态地查看系统的整体运行情况,是一个综合了多方信息监测系统性能和运行信息的实用工具。通过top命令所提供的互动式界面,用热键可以管理。

语法

top(选项)

选项

-b:以批处理模式操作;
-c:显示完整的治命令;
-d:屏幕刷新间隔时间;
-I:忽略失效过程;
-s:保密模式;
-S:累积模式;
-i<时间>:设置间隔时间;
-u<用户名>:指定用户名;
-p<进程号>:指定进程;
-n<次数>:循环显示的次数。

top交互命令

在top命令执行过程中可以使用的一些交互命令。这些命令都是单字母的,如果在命令行中使用了-s选项, 其中一些命令可能会被屏蔽。

h:显示帮助画面,给出一些简短的命令总结说明;
k:终止一个进程;
i:忽略闲置和僵死进程,这是一个开关式命令;
q:退出程序;
r:重新安排一个进程的优先级别;
S:切换到累计模式;
s:改变两次刷新之间的延迟时间(单位为s),如果有小数,就换算成ms。输入0值则系统将不断刷新,默认值是5s;
f或者F:从当前显示中添加或者删除项目;
o或者O:改变显示项目的顺序;
l:切换显示平均负载和启动时间信息;
m:切换显示内存信息;
t:切换显示进程和CPU状态信息;
c:切换显示命令名称和完整命令行;
M:根据驻留内存大小进行排序;
P:根据CPU使用百分比大小进行排序;
T:根据时间/累计时间进行排序;
w:将当前设置写入~/.toprc文件中。

实例

top - 09:44:56 up 16 days, 21:23,  1 user,  load average: 9.59, 4.75, 1.92
Tasks: 145 total,   2 running, 143 sleeping,   0 stopped,   0 zombie
Cpu(s): 99.8%us,  0.1%sy,  0.0%ni,  0.2%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
Mem:   4147888k total,  2493092k used,  1654796k free,   158188k buffers
Swap:  5144568k total,       56k used,  5144512k free,  2013180k cached

解释:

  • top - 09:44:56[当前系统时间],
  • 16 days[系统已经运行了16天],
  • 1 user[个用户当前登录],
  • load average: 9.59, 4.75, 1.92[系统负载,即任务队列的平均长度]
  • Tasks: 145 total[总进程数],
  • 2 running[正在运行的进程数],
  • 143 sleeping[睡眠的进程数],
  • 0 stopped[停止的进程数],
  • 0 zombie[冻结进程数],
  • Cpu(s): 99.8%us[用户空间占用CPU百分比],
  • 0.1%sy[内核空间占用CPU百分比],
  • 0.0%ni[用户进程空间内改变过优先级的进程占用CPU百分比],
  • 0.2%id[空闲CPU百分比], 0.0%wa[等待输入输出的CPU时间百分比],
  • 0.0%hi[],
  • 0.0%st[],
  • Mem: 4147888k total[物理内存总量],
  • 2493092k used[使用的物理内存总量],
  • 1654796k free[空闲内存总量],
  • 158188k buffers[用作内核缓存的内存量]
  • Swap: 5144568k total[交换区总量],
  • 56k used[使用的交换区总量],
  • 5144512k free[空闲交换区总量],
  • 2013180k cached[缓冲的交换区总量],

4、iotop命令

iotop命令是一个用来监视磁盘I/O使用状况的top类工具。iotop具有与top相似的UI,其中包括PID、用户、I/O、进程等相关信息。Linux下的IO统计工具如iostat,nmon等大多数是只能统计到per设备的读写情况,如果你想知道每个进程是如何使用IO的就比较麻烦,使用iotop命令可以很方便的查看。

iotop使用Python语言编写而成,要求Python2.5(及以上版本)和Linux kernel2.6.20(及以上版本)。iotop提供有源代码及rpm包,可从其官方主页下载。

安装

Ubuntu

apt-get install iotop

CentOS

yum install iotop

编译安装

wget http://guichaz.free.fr/iotop/files/iotop-0.4.4.tar.gz    
tar zxf iotop-0.4.4.tar.gz    
python setup.py build    
python setup.py install    

语法

iotop(选项)

选项

-o:只显示有io操作的进程
-b:批量显示,无交互,主要用作记录到文件。
-n NUM:显示NUM次,主要用于非交互式模式。
-d SEC:间隔SEC秒显示一次。
-p PID:监控的进程pid。
-u USER:监控的进程用户。

iotop常用快捷键:

  1. 左右箭头:改变排序方式,默认是按IO排序。
  2. r:改变排序顺序。
  3. o:只显示有IO输出的进程。
  4. p:进程/线程的显示方式的切换。
  5. a:显示累积使用量。
  6. q:退出。

实例

直接执行iotop就可以看到效果了:

Total DISK read:       0.00 B/s | Total DISK write:       0.00 B/s
  TID  PRIO  USER     DISK READ  DISK WRITE  SWAPIN     IO>    command
    1 be/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % init [3]
    2 be/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [kthreadd]
    3 rt/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [migration/0]
    4 be/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [ksoftirqd/0]
    5 rt/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [watchdog/0]
    6 rt/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [migration/1]
    7 be/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [ksoftirqd/1]
    8 rt/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [watchdog/1]
    9 be/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [events/0]
   10 be/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [events/1]
   11 be/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [khelper]
2572 be/4 root        0.00 B/s    0.00 B/s  0.00 %  0.00 % [bluetooth]

5、lsof命令

lsof命令用于查看你进程开打的文件,打开文件的进程,进程打开的端口(TCP、UDP)。找回/恢复删除的文件。是十分方便的系统监视工具,因为lsof命令需要访问核心内存和各种文件,所以需要root用户执行。

在linux环境下,任何事物都以文件的形式存在,通过文件不仅仅可以访问常规数据,还可以访问网络连接和硬件。所以如传输控制协议 (TCP) 和用户数据报协议 (UDP) 套接字等,系统在后台都为该应用程序分配了一个文件描述符,无论这个文件的本质如何,该文件描述符为应用程序与基础操作系统之间的交互提供了通用接口。因为应用程序打开文件的描述符列表提供了大量关于这个应用程序本身的信息,因此通过lsof工具能够查看这个列表对系统监测以及排错将是很有帮助的。

语法

lsof(选项)

选项

-a:列出打开文件存在的进程;
-c<进程名>:列出指定进程所打开的文件;
-g:列出GID号进程详情;
-d<文件号>:列出占用该文件号的进程;
+d<目录>:列出目录下被打开的文件;
+D<目录>:递归列出目录下被打开的文件;
-n<目录>:列出使用NFS的文件;
-i<条件>:列出符合条件的进程。(4、6、协议、:端口、 @ip )
-p<进程号>:列出指定进程号所打开的文件;
-u:列出UID号进程详情;
-h:显示帮助信息;
-v:显示版本信息。

实例

lsof
command     PID USER   FD      type             DEVICE     SIZE       NODE NAME
init          1 root  cwd       DIR                8,2     4096          2 /
init          1 root  rtd       DIR                8,2     4096          2 /
init          1 root  txt       REG                8,2    43496    6121706 /sbin/init
init          1 root  mem       REG                8,2   143600    7823908 /lib64/ld-2.5.so
init          1 root  mem       REG                8,2  1722304    7823915 /lib64/libc-2.5.so
init          1 root  mem       REG                8,2    23360    7823919 /lib64/libdl-2.5.so
init          1 root  mem       REG                8,2    95464    7824116 /lib64/libselinux.so.1
init          1 root  mem       REG                8,2   247496    7823947 /lib64/libsepol.so.1
init          1 root   10u     FIFO               0,17                1233 /dev/initctl
migration     2 root  cwd       DIR                8,2     4096          2 /
migration     2 root  rtd       DIR                8,2     4096          2 /
migration     2 root  txt   unknown                                        /proc/2/exe
ksoftirqd     3 root  cwd       DIR                8,2     4096          2 /
ksoftirqd     3 root  rtd       DIR                8,2     4096          2 /
ksoftirqd     3 root  txt   unknown                                        /proc/3/exe
migration     4 root  cwd       DIR                8,2     4096          2 /
migration     4 root  rtd       DIR                8,2     4096          2 /
migration     4 root  txt   unknown                                        /proc/4/exe
ksoftirqd     5 root  cwd       DIR                8,2     4096          2 /
ksoftirqd     5 root  rtd       DIR                8,2     4096          2 /
ksoftirqd     5 root  txt   unknown                                        /proc/5/exe
events/0      6 root  cwd       DIR                8,2     4096          2 /
events/0      6 root  rtd       DIR                8,2     4096          2 /
events/0      6 root  txt   unknown                                        /proc/6/exe
events/1      7 root  cwd       DIR                8,2     4096          2 /

lsof输出各列信息的意义如下:

  • COMMAND:进程的名称
  • PID:进程标识符
  • PPID:父进程标识符(需要指定-R参数)
  • USER:进程所有者
  • PGID:进程所属组
  • FD:文件描述符,应用程序通过文件描述符识别该文件。

文件描述符列表:

  1. cwd:表示current work dirctory,即:应用程序的当前工作目录,这是该应用程序启动的目录,除非它本身对这个目录进行更改
  2. txt:该类型的文件是程序代码,如应用程序二进制文件本身或共享库,如上列表中显示的 /sbin/init 程序
  3. lnn:library references (AIX);
  4. er:FD information error (see NAME column);
  5. jld:jail directory (FreeBSD);
  6. ltx:shared library text (code and data);
  7. mxx :hex memory-mapped type number xx.
  8. m86:DOS Merge mapped file;
  9. mem:memory-mapped file;
  10. mmap:memory-mapped device;
  11. pd:parent directory;
  12. rtd:root directory;
  13. tr:kernel trace file (OpenBSD);
  14. v86 VP/ix mapped file;
  15. 0:表示标准输出
  16. 1:表示标准输入
  17. 2:表示标准错误

一般在标准输出、标准错误、标准输入后还跟着文件状态模式:

  1. u:表示该文件被打开并处于读取/写入模式。
  2. r:表示该文件被打开并处于只读模式。
  3. w:表示该文件被打开并处于。
  4. 空格:表示该文件的状态模式为unknow,且没有锁定。
  5. -:表示该文件的状态模式为unknow,且被锁定。

同时在文件状态模式后面,还跟着相关的锁:

  1. N:for a Solaris NFS lock of unknown type;
  2. r:for read lock on part of the file;
  3. R:for a read lock on the entire file;
  4. w:for a write lock on part of the file;(文件的部分写锁)
  5. W:for a write lock on the entire file;(整个文件的写锁)
  6. u:for a read and write lock of any length;
  7. U:for a lock of unknown type;
  8. x:for an SCO OpenServer Xenix lock on part of the file;
  9. X:for an SCO OpenServer Xenix lock on the entire file;
  10. space:if there is no lock.

文件类型:

  1. DIR:表示目录。
  2. CHR:表示字符类型。
  3. BLK:块设备类型。
  4. UNIX: UNIX 域套接字。
  5. FIFO:先进先出 (FIFO) 队列。
  6. IPv4:网际协议 (IP) 套接字。
  7. DEVICE:指定磁盘的名称
  8. SIZE:文件的大小
  9. NODE:索引节点(文件在磁盘上的标识)
  10. NAME:打开文件的确切名称

6、free命令

free命令可以显示当前系统未使用的和已使用的内存数目,还可以显示被内核使用的内存缓冲区。

语法

free(选项)

选项

-b:以Byte为单位显示内存使用情况;
-k:以KB为单位显示内存使用情况;
-m:以MB为单位显示内存使用情况;
-o:不显示缓冲区调节列;
-s<间隔秒数>:持续观察内存使用状况;
-t:显示内存总和列;
-V:显示版本信息。

实例

free -m
             total       used       free     shared    buffers     cached
Mem:          2016       1973         42          0        163       1497
-/+ buffers/cache:        312       1703
Swap:         4094          0       4094

第一部分Mem行解释:

total:内存总数;
used:已经使用的内存数;
free:空闲的内存数;
shared:当前已经废弃不用;
buffers Buffer:缓存内存数;
cached Page:缓存内存数。

关系:total = used + free

第二部分(-/+ buffers/cache)解释:

(-buffers/cache) used内存数:第一部分Mem行中的 used – buffers – cached
(+buffers/cache) free内存数: 第一部分Mem行中的 free + buffers + cached

可见-buffers/cache反映的是被程序实实在在吃掉的内存,而+buffers/cache反映的是可以挪用的内存总数。

第三部分是指交换分区。


7、time命令

time命令用于统计给定命令所花费的总时间。

语法

time(参数)

参数

指令:指定需要运行的额指令及其参数。

实例

当测试一个程序或比较不同算法时,执行时间是非常重要的,一个好的算法应该是用时最短的。所有类UNIX系统都包含time命令,使用这个命令可以统计时间消耗。例如:

[root@localhost ~]# time ls
anaconda-ks.cfg  install.log  install.log.syslog  satools  text

real    0m0.009s
user    0m0.002s
sys     0m0.007s

输出的信息分别显示了该命令所花费的real时间、user时间和sys时间。

  • real时间是指挂钟时间,也就是命令开始执行到结束的时间。这个短时间包括其他进程所占用的时间片,和进程被阻塞时所花费的时间。
  • user时间是指进程花费在用户模式中的CPU时间,这是唯一真正用于执行进程所花费的时间,其他进程和花费阻塞状态中的时间没有计算在内。
  • sys时间是指花费在内核模式中的CPU时间,代表在内核中执系统调用所花费的时间,这也是真正由进程使用的CPU时间。

shell内建也有一个time命令,当运行time时候是调用的系统内建命令,应为系统内建的功能有限,所以需要时间其他功能需要使用time命令可执行二进制文件/usr/bin/time

使用-o选项将执行时间写入到文件中:

/usr/bin/time -o outfile.txt ls

使用-a选项追加信息:

/usr/bin/time -a -o outfile.txt ls

使用-f选项格式化时间输出:

/usr/bin/time -f "time: %U" ls

-f选项后的参数:

参数描述
%Ereal时间,显示格式为[小时:]分钟:秒
%Uuser时间。
%Ssys时间。
%C进行计时的命令名称和命令行参数。
%D进程非共享数据区域,以KB为单位。
%x命令退出状态。
%k进程接收到的信号数量。
%w进程被交换出主存的次数。
%Z系统的页面大小,这是一个系统常量,不用系统中常量值也不同。
%P进程所获取的CPU时间百分百,这个值等于user+system时间除以总共的运行时间。
%K进程的平均总内存使用量(data+stack+text),单位是KB。
%w进程主动进行上下文切换的次数,例如等待I/O操作完成。
%c进程被迫进行上下文切换的次数(由于时间片到期)。

8、uptime命令

uptime命令能够打印系统总共运行了多长时间和系统的平均负载。uptime命令可以显示的信息显示依次为:现在时间、系统已经运行了多长时间、目前有多少登陆用户、系统在过去的1分钟、5分钟和15分钟内的平均负载。

语法

uptime(选项)

选项

-V:显示指令的版本信息。

实例

使用uptime命令查看系统负载:

[root@LinServ-1 ~]# uptime -V    #显示uptime命令版本信息
procps version 3.2.7

[root@LinServ-1 ~]# uptime
 15:31:30 up 127 days,  3:00,  1 user,  load average: 0.00, 0.00, 0.00

显示内容说明:

15:31:30             //系统当前时间
up 127 days,  3:00   //主机已运行时间,时间越大,说明你的机器越稳定。
1 user               //用户连接数,是总连接数而不是用户数
load average: 0.00, 0.00, 0.00         // 系统平均负载,统计最近1,5,15分钟的系统平均负载

那么什么是系统平均负载呢? 系统平均负载是指在特定时间间隔内运行队列中的平均进程数。

如果每个CPU内核的当前活动进程数不大于3的话,那么系统的性能是良好的。如果每个CPU内核的任务数大于5,那么这台机器的性能有严重问题。

如果你的linux主机是1个双核CPU的话,当Load Average 为6的时候说明机器已经被充分使用了。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值